PRODUCT MONOGRAPH

Pr NOVO-DIPIRADOL (dipyridamole) 25, 50, 75, 100 mg Tablets

Pr DIPYRIDAMOLE FOR INJECTION (dipyridamole) 5 mg/mL, USP

Coronary Vasodilator
Inhibitor of Platelet Adhesion and Aggregation

Novopharm Limited
30 Novopharm Court
Toronto, Ontario
M1B 2K9

Date of Preparation: October 26, 2006

Control No. 107491
Table of Contents

PART I: HEALTH PROFESSIONAL INFORMATION

- SUMMARY PRODUCT INFORMATION ... 3
- INDICATIONS AND CLINICAL USE ... 3
- CONTRAINDICATIONS ... 3
- WARNINGS AND PRECAUTIONS ... 4
- ADVERSE REACTIONS .. 5
- DRUG INTERACTIONS ... 8
- DOSAGE AND ADMINISTRATION ... 9
- OVERDOSAGE ... 9
- ACTION AND CLINICAL PHARMACOLOGY ... 10
- STORAGE AND STABILITY .. 11
- SPECIAL HANDLING INSTRUCTIONS ... 11
- DOSAGE FORMS, COMPOSITION AND PACKAGING 11

PART II: SCIENTIFIC INFORMATION

- PHARMACEUTICAL INFORMATION ... 13
- CLINICAL TRIALS ... 14
- DETAILED PHARMACOLOGY ... 14
- TOXICOLOGY ... 16
- REFERENCES ... 18

PART III: CONSUMER INFORMATION ... 22
PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dose Form/Strength</th>
<th>Clinically Relevant Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral</td>
<td>tablet 25, 50, 75 and 100 mg</td>
<td>Magnesium stearate, microcrystalline cellulose, pregelatinized starch, silica, sodium lauryl sulfate, sodium starch glycolate, starch. The sugar coating contains: acacia, acetylated monoglycerides, colloidal silicon dioxide, ethylcellulose, hydroxypropyl methylcellulose, sucrose, talc, titanium dioxide and: 25 mg: FD & C Yellow No. 6 50 mg: FD & C Yellow No. 6 A1 Lake, FD & C Red No. 40 A1 Lake and FD & C Blue No. 2 A1 Lake 75 mg: FD & C Yellow No. 6 A1 Lake 100 mg: FD & C Blue No. 2</td>
</tr>
<tr>
<td>i.v. (intravenous)</td>
<td>10 mL vials, 5 mg/mL</td>
<td>Tartaric acid, polyethylene glycol 600, hydrochloric acid, water for injection and sodium hydroxide, if necessary to adjust the pH.</td>
</tr>
</tbody>
</table>

INDICATIONS AND CLINICAL USE

Thromboembolic Disease
NOVO-DIPIRADOL (dipyridamole) tablets are indicated for:

- The prevention of post-operative thromboembolic complications associated with prosthetic heart valve.

Myocardial Perfusion Imaging
DIPYRIDAMOLE FOR INJECTION (dipyridamole) can be used to:

- induce pharmacologic vasodilation for myocardial perfusion imaging.

CONTRAINDICATIONS

- Patients who are hypersensitive to this drug or to any ingredient in the formulation or component of the container. For a complete listing, see the Dosage Forms, Composition and Packaging section of the product monograph.
- Intravenous administration of DIPYRIDAMOLE FOR INJECTION is not recommended in states of shock or collapse.
WARNINGS AND PRECAUTIONS

General
Rare serious adverse reactions associated with the administration of intravenous dipyridamole for myocardial imaging have been reported. These have included fatal and non-fatal myocardial infarction, ventricular fibrillation, symptomatic ventricular tachycardia, stroke and transient cerebral ischemia.

Cardiovascular
Since excessive doses of dipyridamole (intravenous or oral) or intravenous doses given too rapidly can produce peripheral vasodilation, dipyridamole should be used with caution in patients with hypotension, coronary artery disease, including rapidly worsening angina, left ventricular outflow obstruction, (including subvalvular aortic stenosis), or hemodynamic instability. In rare cases, such patients may be at risk for developing myocardial ischemia and infarction.

Clinical experience suggests that patients being treated with oral dipyridamole who also require pharmacological stress testing with intravenous dipyridamole, should discontinue drugs containing oral dipyridamole for twenty-four hours prior to stress testing. Failure to do so may impair the sensitivity of the test.

An intravenous bolus of DIPYRIDAMOLE FOR INJECTION (40-50 mg over 4 minutes) can result in chest pain in patients with coronary artery disease. Rarely, hypotension or ventricular arrhythmias occur with a rapid, i.v. bolus. The infusion rate should be monitored to minimize this risk. The symptoms can generally be reversed with an intravenous injection of 50-250 mg of aminophylline over several minutes.

Intravenous DIPYRIDAMOLE FOR INJECTION as an adjunct to myocardial perfusion imaging should be used with caution in patients with unstable angina; as such patients may be at risk for severe myocardial infarction.

As with exercise induced stress, the use of intravenous dipyridamole as an adjunct to myocardial perfusion imaging may occasionally precipitate cardiac arrhythmias in patients with severe heart disease. Scanning should therefore be performed with constant monitoring of the patient’s ECG. Parenteral aminophylline should be readily available and should be administered as a slow intravenous injection of 50-250 mg in the event of occurrences such as chest pain, bronchospasm, severe nausea/vomiting, hypotension, severe headache.

In the case of severe hypotension, the patient should be placed in a supine position with the head tilted down if necessary, before administration of parenteral aminophylline. If 250 mg of aminophylline does not relieve chest pain symptoms within a few minutes, sublingual nitroglycerin may be administered. If chest pain continues despite use of aminophylline and nitroglycerin, the possibility of myocardial infarction should be considered. If the clinical condition of a patient with an adverse event permits a one minute delay in the administration of
parenteral aminophylline, thallium-201 may be injected and allowed to circulate for one minute before the injection of aminophylline. This will allow initial thallium perfusion imaging to be performed before reversal of the pharmacologic effects of DIPYRIDAMOLE FOR INJECTION on the coronary circulation.

Hepatic/Biliary/Pancreatic
A small number of cases have been reported in which unconjugated dipyridamole was shown to be incorporated into gallstones to a variable extent (up to 70% by dry weight of stone). These patients were all elderly, had evidence of ascending cholangitis and had been treated with oral dipyridamole for a number of years. There is no evidence that dipyridamole was the initiating factor in causing gallstones to form in these patients. It is possible that bacterial deglucuronidation of conjugated dipyridamole in bile may be the mechanism responsible for the presence of dipyridamole in gallstones.

Respiratory
Patients with a history or presence of bronchial hyperreactivity may be at risk of developing bronchospasm during the use of intravenous DIPYRIDAMOLE FOR INJECTION as an adjunct to myocardial perfusion imaging. Although the actual overall incidence of this occurrence is small (~0.2%), the clinical information to be gained through the use of intravenous DIPYRIDAMOLE FOR INJECTION should be weighed against the potential risk to the patient.

Special Populations

Pregnant Women: Reproductive studies have been performed in mice, rats, and rabbits at doses of up to 125 mg/kg and have not revealed evidence of impaired embryonic development attributable to dipyridamole. However, there have not been adequate, well controlled studies in pregnant women and the drug should be used during pregnancy only if the expected benefits outweigh the potential risks.

Nursing Women: Dipyridamole is excreted in human milk. Caution should therefore be used when this drug is administered to nursing mothers.

Pediatrics: The safety and effectiveness of dipyridamole have not been established in the pediatric population.

ADVERSE REACTIONS

PARENTERAL ADMINISTRATION (i.v. infusion)

Adverse Drug Reaction Overview
Serious adverse events (fatal and non-fatal myocardial infarction, severe ventricular arrhythmias, and serious CNS abnormalities) associated with the intravenous administration of DIPYRIDAMOLE FOR INJECTION for myocardial imaging are described in WARNINGS.
Clinical Trial Adverse Drug Reactions

Because clinical trials are conducted under very specific conditions the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse drug reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

When intravenous dipyridamole was used as an adjunct to myocardial perfusion imaging in a study of 3911 patients, the following events occurred in greater than 1% of the patients:

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Incidence (%) of Occurrence In 3911 Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest pain/angina pectoris</td>
<td>19.7</td>
</tr>
<tr>
<td>Headache</td>
<td>12.2</td>
</tr>
<tr>
<td>Dizziness</td>
<td>11.8</td>
</tr>
<tr>
<td>Electrocardiographic Abnormalities/ST-T changes</td>
<td>7.5</td>
</tr>
<tr>
<td>Electrocardiographic Abnormalities/Extrasystoles</td>
<td>5.2</td>
</tr>
<tr>
<td>Hypotension</td>
<td>4.6</td>
</tr>
<tr>
<td>Nausea</td>
<td>4.6</td>
</tr>
<tr>
<td>Flushing</td>
<td>3.4</td>
</tr>
<tr>
<td>Electrocardiographic Abnormalities/Tachycardia</td>
<td>3.2</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>2.6</td>
</tr>
<tr>
<td>Pain Unspecified</td>
<td>2.6</td>
</tr>
<tr>
<td>Blood Pressure Lability</td>
<td>1.6</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.5</td>
</tr>
<tr>
<td>Paresthesia</td>
<td>1.3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Less Common Clinical Trial Adverse Drug Reactions (<1%)

Cardiovascular: Electrocardiographic abnormalities unspecified, arrhythmia unspecified, palpitation, ventricular tachycardia, bradycardia, myocardial infarction, AV block, syncope, orthostatic hypotension, atrial fibrillation, supraventricular tachycardia, ventricular arrhythmia unspecified, heart block unspecified, cardiomyopathy, and edema.

Central and Peripheral Nervous System: Hypoaesthesia, hypertonia, nervousness/anxiety, tremor, abnormal coordination, somnolence, dysphonia, migraine, vertigo.

Respiratory: Pharyngitis, bronchospasm, hyperventilation, rhinitis, coughing, pleural pain.

Gastrointestinal: Dyspepsia, dry mouth, abdominal pain, flatulence, vomiting, eructation, dysphagia, tenesmus, increased appetite.

Other: Myalgia, back pain, injection site reaction unspecified, diaphoresis, asthenia, malaise, arthralgia, injection site pain, rigor, earache, tinnitus, vision abnormalities unspecified, dysgeusia, thirst, depersonalization, eye pain, renal pain, perineal pain, breast pain, intermittent claudication, leg cramping.
Post-Market Adverse Drug Reactions

When using dipyridamole as an adjunct to myocardial imaging, the following adverse events have been reported: cardiac death, cardiac arrest, myocardial infraction (rarely fatal), arrhythmias (e.g. sinus node arrest), tachycardia, fibrillation, and cerebrovascular events (e.g. stroke, TIA, seizures). Dipyridamole may cause severe hypotension and hot flushes. Diarrhea has been observed.

Hypersensitivity reactions such as rash, urticaria, angio-oedema, laryngospasm, severe bronchospasm and very rarely anaphylactoid reactions have been reported.

ORAL ADMINISTRATION

Adverse reactions at therapeutic doses are usually minimal and transient. Occasionally diarrhoea, vomiting, headache, dizziness, nausea, flushing, syncope or weakness, myalgia, and skin rash have occurred during initiation of therapy. Mild occasional gastric distress can be avoided by administration of the tablets with a glass of milk. Gastric irritation, emesis and abdominal cramping may occur at high dosage levels. Rare cases of what appears to be an aggravation of angina pectoris have been reported, usually at the initiation of therapy.

On those uncommon occasions when adverse reactions have been persistent or intolerable to the patient, withdrawal of the medication has been followed promptly by cessation of the undesirable symptoms.

When dipyridamole is used in combination with ASA, the only side effect clearly attributable to dipyridamole is headache. This symptom shows an increase of 5.5% in the combination treated group over that occurring in a group of patients treated with ASA alone. Other adverse reactions which occur during combination therapy are similar to those mentioned above, together with the well documented side effects of ASA therapy, notably gastric distress and gastrointestinal bleeding.

At the higher doses of dipyridamole there may be an increase in the incidence of adverse reactions.

In very rare cases, increased bleeding during or after surgery has been reported.

Post-Market Adverse Drug Reactions

As a result of its vasodilator properties, dipyridamole may cause hypotension, hot flushes, and tachycardia. Worsening of symptoms of coronary heart disease has been observed. Hypersensitivity reactions such as rash, urticaria, severe bronchospasm and angio-oedema have been reported.

Dipyridamole has been shown to be incorporated into gallstones (See Warnings).

Isolated cases of thrombocytopenia have been reported in conjunction with treatment with dipyridamole.
DRUG INTERACTIONS

Drug-Drug Interactions

Table 1 - Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Dipyridamole</th>
<th>Effect</th>
<th>Clinical comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipyridamole - Adenosine</td>
<td>Dipyridamole increases plasma levels and cardiovascular effects of adenosine.</td>
<td>Adjustment of adenosine dosage should be considered</td>
</tr>
<tr>
<td>Dipyridamole For Injection - Theophylline, aminophylline</td>
<td>The use of oral maintenance xanthines (eg., theophylline, aminophylline) may abolish the coronary vasodilation produced by intravenous dipyridamole administration.</td>
<td>This could lead to false negative imaging results.</td>
</tr>
<tr>
<td>Dipyridamole For Injection - Oral dipyridamole</td>
<td>In patients already receiving oral dipyridamole, clinical experience suggests that the sensitivity of the intravenous dipyridamole testing may be impaired</td>
<td>Oral dipyridamole treatment should be discontinued for 24-hours prior to testing.</td>
</tr>
<tr>
<td>Dipyridamole - Anticoagulants, thrombolytics</td>
<td>the combined use of such agents may result in an increased risk of hemorrhage</td>
<td>Caution is necessary when dipyridamole is used concurrently with anticoagulants or thrombolytics.</td>
</tr>
<tr>
<td>Dipyridamole - ASA</td>
<td>the addition of dipyridamole to acetylsalicylic acid does not increase the incidence of bleeding events.</td>
<td></td>
</tr>
<tr>
<td>Dipyridamole - Warfarin</td>
<td>When dipyridamole was administered concomitantly with warfarin, bleeding was no greater in frequency or severity than that observed when warfarin was administered alone.</td>
<td></td>
</tr>
<tr>
<td>Dipyridamole - Blood pressure lowering drugs</td>
<td>Dipyridamole may increase the hypotensive effect of blood pressure lowering drugs</td>
<td></td>
</tr>
<tr>
<td>Dipyridamole – Cholinesterase inhibitors</td>
<td>Dipyridamole may counteract the anticholinesterase effect of cholinesterase inhibitors</td>
<td>In patients with myasthenia gravis, readjustment of therapy may be necessary during treatment with dipyridamole.</td>
</tr>
</tbody>
</table>

Drug-Food Interactions

Xanthine derivatives (e.g., found in coffee, tea) may weaken the effect of dipyridamole and therefore should be avoided 24 hours before myocardial imaging with dipyridamole.
DOSAGE AND ADMINISTRATION

Dosing Considerations

ORAL ADMINISTRATION
Thromboembolic Disease
Recommended Dose and Dosage Adjustment
The recommended oral dose is 100 mg q.i.d., one hour before meals. The maximum daily dose is 600 mg. A lower dose of 100 mg of NOVO-DIPRADIOL (dipyridamole) daily together with 1 g ASA daily, prolongs platelet survival to the same extent.

PARENTERAL ADMINISTRATION
Myocardial Perfusion Imaging
Recommended Dose and Dosage Adjustment
The dose of intravenous DIPYRIDAMOLE FOR INJECTION used as an adjunct to myocardial perfusion imaging should be adjusted according to the weight of the patient.

Immediately prior to infusion, DIPYRIDAMOLE FOR INJECTION i.v. should be diluted at least 1:2 with Dextrose Injection, USP 5%. The recommended dose is 0.142 mg/kg/min., infused over 4 minutes.

A total dose of greater than 60 mg is not recommended for use in any patient. The imaging agent should be injected within 5 minutes following the 4 minute infusion of DIPYRIDAMOLE FOR INJECTION. Do not mix DIPYRIDAMOLE FOR INJECTION with other drugs in the same syringe or infusion container. Infusion of undiluted DIPYRIDAMOLE FOR INJECTION may cause local irritation.

As with all parenteral drug products, intravenous admixtures should be inspected visually for clarity, particulate matter, precipitate, discoloration and leakage prior to administration, whenever solution and container permit. Solutions showing haziness, particulate matter, precipitate, discoloration or leakage should not be used. Discard unused portion.

OVERDOSAGE

Hypotension, if it occurs, is likely to be of short duration but vasopressor substances may be used if necessary. Symptoms such as feeling warm, flushes, sweating, accelerated pulse, restlessness, feeling of weakness and dizziness, and anginal complaints may occur. A drop in blood pressure and tachycardia might be observed.

ORAL ADMINISTRATION
Symptomatic therapy is recommended. A gastric decontamination procedure should be considered. Administration of xanthine derivatives (e.g. aminophylline) may reverse the
ACTION AND CLINICAL PHARMACOLOGY

Mechanism of Action
Dipyridamole normalizes increased platelet adhesiveness and tendency to aggregate (Hellem’s Method)\(^4,5\). Dipyridamole has been found to lengthen abnormally shortened platelet survival time in a dose-dependent manner; 400 mg/day or 100 mg/day plus 1 gram ASA.\(^15, 16, 17, 35, 36\)

It is believed that platelet reactivity and interaction with prosthetic cardiac valve surfaces, resulting in abnormal shortened platelet survival time is a significant factor in connection with prosthetic heart valve replacement.

In a controlled clinical trial involving patients who had undergone surgical placement of prosthetic heart valves (mitral and/or aortic valve replacement), dipyridamole, in combination with anticoagulants, significantly decreased the incidence of post-operative thromboembolic events, without increasing hemorrhagic complications. The incidence of thromboembolic events in patients receiving dipyridamole in a dose of 400 mg/day in combination with anticoagulants was 1.3% compared to 14.3% to the control group treated with anticoagulant alone.\(^37, 38, 39\)

In vitro dipyridamole potentiates the aggregation-inhibiting effects of adenosine and prostaglandin E\(_1\), inhibits platelet uptake of adenosine, serotonin and glucose, and increases platelet cyclic AMP levels. At higher concentrations dipyridamole inhibits platelet aggregation induced by ADP or collagen.\(^1, 4, 29, 30, 33\)

Myocardial blood flow increases in a dose-dependent fashion after i.v. or oral dipyridamole, with flows 170% or more above normal. Maximal increases are achieved at about 2.0 µg/mL with 0.8 µg/mL being the threshold serum level. Single oral doses of 150 mg dipyridamole produce the maximal response\(^20, 21\). At normal therapeutic doses, no significant alterations of peripheral blood flow, systemic blood pressure, or heart rate have been observed.

Pharmacodynamics
Dipyridamole is a coronary vasodilator in man. The mechanism of vasodilation has not been fully elucidated, but may result from inhibition of uptake of adenosine, an important mediator of coronary vasodilation. The vasodilatory effects of dipyridamole are abolished by administration of the adenosine receptor antagonist theophylline.
How dipyridamole-induced vasodilation leads to abnormalities in thallium distribution (when administered intravenously for myocardial perfusion imaging) and ventricular function is also uncertain, but presumably represents a “steal” phenomenon. In this situation, relatively intact vessels dilate, and sustain enhanced flow, leaving reduced pressure and flow across areas of hemodynamically important coronary vascular constriction.

Pharmacokinetics

Absorption: Dipyridamole is readily absorbed from the gastrointestinal tract, reaching peak plasma levels in man 1-3 hours following oral administration.\(^{22,26,29,41}\) Peak plasma levels are dose-dependent and range from about 0.5 µg/mL after a 25 mg dose to 1.6 µg/mL after a 75 mg dose.\(^{6,29,32,41}\) Blood levels are quite variable, possibly depending on food intake and gastrointestinal peristalsis. Ingestion on an empty stomach may result in higher blood levels.\(^{22,32}\)

Distribution: Following intravenous administration, the distribution half-life in man is about 25 minutes\(^{41}\) and about 3 hours\(^{26,29,30}\) after oral administration. When plasma levels of drug are followed for up to 60 hours after i.v. or oral administration of 20 to 50 mg, plasma levels decline tri-exponentially with half-lives of 5 minutes (i.v. only), 53 minutes and about 10-12 hours.\(^{22,32}\)

The volume of distribution is about 140 litres with about 92-99% binding to plasma proteins, primarily alpha-acid glycoprotein.\(^{22,32}\)

STORAGE AND STABILITY

Store bottles between 15° - 30°C. Unit dose should be stored between 15°- 25°C and protected from high humidity.

DIPYRIDAMOLE FOR INJECTION vials should be stored between 15° to 25°C. Avoid freezing. Protect from light. Single dose vials. Discard unused portion.

SPECIAL HANDLING INSTRUCTIONS

Protect DIPYRIDAMOLE FOR INJECTION from direct light, and avoid freezing.

DOSAGE FORMS, COMPOSITION AND PACKAGING

NOVO-DIPIRADOL Tablets:

NOVO-DIPIRADOL (dipyridamole) is available as 25 mg orange, round, sugar-coated tablets in bottles of 100 and 500 and unit dose strips of 100 tablets. Each tablet contains 25 mg of dipyridamole.

NOVO-DIPIRADOL is available as 50 mg brown, round, sugar-coated tablets in bottles of 100 and 500 and unit dose strips of 100 tablets. Each tablet contains 50 mg of dipyridamole.
NOVO-DIPIRADOL is available as 75 mg deep orange, round, sugar-coated tablets in bottles of 100 and 500 and unit dose strips of 100 tablets. Each tablet contains 75 mg of dipyridamole.

NOVO-DIPIRADOL is available as 100 mg white, round, sugar coated tablets in bottles of 100 and 500 and unit dose strips of 100 tablets. Each tablet contains 100 mg of dipyridamole.

DIPYRIDAMOLE FOR INJECTION:
10 mL, single dose vials, containing 5 mg/mL dipyridamole. Dipyridamole For Injection is supplied as 1 vial per box and 5 vials per box.

Composition
NOVO-DIPIRADOL tablets contain:

- 25 mg SC tablets: magnesium stearate, microcrystalline cellulose, pregelatinized starch, silica, sodium lauryl sulfate, sodium starch glycolate, starch. The sugar coating contains: acacia, acetylated monoglycerides, colloidal silicon dioxide, ethylcellulose, hydroxypropyl methylcellulose, sucrose, talc, FD & C Yellow No. 6 and titanium dioxide.

- 50 mg SC tablets: magnesium stearate, microcrystalline cellulose, pregelatinized starch, silica, sodium lauryl sulfate, sodium starch glycolate, starch. The sugar coating contains: acacia, acetylated monoglycerides, colloidal silicon dioxide, ethylcellulose, hydroxypropyl methylcellulose, sucrose, talc, FD & C Yellow No. 6 A1 Lake, FD & C Red No. 40 A1 Lake and FD & C Blue No. 2 A1 Lake.

- 75 mg SC tablets: magnesium stearate, microcrystalline cellulose, pregelatinized starch, silica, sodium lauryl sulfate, sodium starch glycolate, starch. The sugar coating contains: acacia, acetylated monoglycerides, colloidal silicon dioxide, ethylcellulose, hydroxypropyl methylcellulose, sucrose, talc, FD & C Yellow No. 6 A1 Lake and titanium dioxide.

- 100 mg SC tablets: magnesium stearate, microcrystalline cellulose, pregelatinized starch, silica, sodium lauryl sulfate, sodium starch glycolate, starch. The sugar coating contains: acacia, acetylated monoglycerides, colloidal silicon dioxide, ethylcellulose, hydroxypropyl methylcellulose, sucrose, talc, FD & C Blue No. 2 and titanium dioxide.

Non-medicinal ingredients contained in DIPYRIDAMOLE FOR INJECTION vials include tartaric acid, polyethylene glycol 600, hydrochloric acid, water for injection and sodium hydroxide, if necessary to adjust the pH.
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substance

Proper Name: dipyridamole

Chemical Name: Ethanol, 2,2',2'',2'''-[4,8-di-1-piperidinylpyrimido[5,4-d]pyrimidine-2,6-diyl]dinitrilo]tetrakis-.

Structural Formula:

![Structural formula of dipyridamole]

Molecular Formula: $C_{24}H_{40}N_8O_4$

Molecular Weight: 504.6

Melting Range: 164-168°C

Description: A homogeneous yellow crystalline powder, odorless but with a bitter taste. It is soluble in dilute acids, methanol, ethanol and chloroform. In solution, dipyridamole is yellow and shows a strong blue-green fluorescence.
CLINICAL TRIALS

In a randomized, double-blind study, the effects of combined dipyridamole and ASA treatment were compared to ASA alone and to placebo in 2026 patients who had suffered a myocardial infarction 8 weeks to 5 years previously.27,28

Combined treatment with dipyridamole 75 mg and ASA 325 mg t.i.d., reduced the life table rates for coronary incidence over a range of 37.0-66.7% when compared to placebo in the 4-24 month period after starting treatment. Similarly, for ASA alone, these reductions ranged from 29.1-51.4% over the same period. The differences between dipyridamole -ASA treatment and placebo were statistically significant at each 4 monthly evaluation.

Differences between ASA alone and placebo were statistically significant only at 8 and 24 months. At the end of the follow-up, 41 months later, essentially no differences were found between ASA and dipyridamole -ASA treatment but both drug treated groups showed 21-25% lower coronary mortality and coronary incidence compared to placebo. This was no longer statistically significant.

Hospitalization longer than 2 weeks for recurrent myocardial infarction was significantly reduced in both drug treatment groups compared to the placebo group.

The patient subgroup (447 or about 20% of the total sample) entering the trial within 6 months after their last myocardial infarction showed the largest reduction in total and coronary mortality. However, the only statistically significant finding was a 63.6% reduction in life table rates for coronary death in the dipyridamole /ASA group compared to placebo after 36 months of treatment.

A randomized, double-blind trial comparing dipyridamole (begun two days before operation) plus ASA (begun seven hours after operation) against placebo, in 407 patients undergoing coronary bypass, showed a statistically significant reduction in the rate of graft occlusion in patients receiving dipyridamole and ASA. Long-term follow-up showed that treatment with dipyridamole and ASA continued to be effective in preventing late development of vein graft occlusion after operation, and such treatment should be continued for at least one year. Use of dipyridamole pre-operatively in the prevention of bypass vein graft occlusion has not been associated with an increase of chest tube blood loss or transfusion requirements following coronary bypass surgery.

DETAILED PHARMACOLOGY

Pharmacokinetics
In animal studies23, autoradiography in rats shows the liver with the highest concentrations of dipyridamole, with decreasing quantities in the following tissues: adrenal cortex, kidneys,
myocardium, pituitary, skeletal muscle, lungs and blood. Twice as much drug is found in the myocardium as in skeletal muscle. Within the myocardium, the largest portion of dipyridamole is intracellular with the sarcolemma fraction containing up to 50%. On the basis of autoradiography, there are only small amounts of placental transfer. The drug does not cross the blood-brain barrier.

Conjugation of dipyridamole with glucuronic acid is the primary pathway of metabolism. In individuals with surgical drainage of the biliary tract, 95% of an intravenous 25 mg dose can be recovered from the bile within 2 hours. Enterohepatic circulation has been demonstrated in both animals and man.2

Pharmacodynamics

Antithrombotic Effects:
The effects of dipyridamole on platelet function may be due to its inhibition of cyclic AMP- phosphodiesterase activity or to potentiation of the effect of prostacyclin. Both of these pathways would lead to an intracellular increase of cyclic AMP, which prevents platelet clumping.25 Dipyridamole decreases platelet consumption and thrombosis associated with grafts and with the presence of foreign surfaces in the cardiovascular systems of experimental animals 18,19

Teflon vascular prosthesis implanted in the superior vena cava of control dogs are coated with thrombotic deposits as early as 10 days following surgery. No thrombotic occlusions were observed 9 days or 6 months after surgery in dogs treated with dipyridamole 1 mg/kg/day, intravenously. At 18 months, prosthesis were coated with a thin layer of non-stenosing ‘neointima’ without accumulation of thrombotic material.18

In primates, platelet survival shortened by arteriovenous cannulation or homocystine injection can be normalized by dipyridamole, 100 mg/day, or 25 mg/day plus 300 mg/day ASA. ASA alone had no effect. Decreased platelet counts in control pigs undergoing cardiopulmonary bypass are less pronounced if the animals are treated with dipyridamole 10 mg/kg.1.

Thrombosis and neointimal fibrous hyperplasia (NFH) have been implicated as the major reasons for occlusion of the arterial grafts.24 The operation causes intimal injury at the anastomotic site, promoting platelet adherence at this site or within the graft itself; it triggers platelet aggregation and eventual occlusion by a platelet-fibrin thrombus. In addition, fibrous hyperplasia is possibly induced by a platelet-derived growth factor (PDGF). In studies with dogs, treatment with dipyridamole (started before CABG surgery and continued post-operatively) with the addition of aspirin (begun after surgery) has been shown to be effective in preventing early platelet deposition on grafts,14 early graft occlusion by thrombosis and possibly late graft narrowing by intimal hyperplasia.24

Circulatory Effects:
The effects of endogenous adenosine are potentiated by dipyridamole inhibition of adenosine uptake in erythrocytes and platelets.4 Since adenosine is involved in physiological regulation of coronary blood flow, the coronary vasodilation induced by dipyridamole may be related to the adenosine-sparing effect of this drug.
Intravenous injection of dipyridamole in the dog causes coronary vasodilation.3,31 The threshold dose is 0.01 mg/kg with maximal effects reached by 0.2 mg/kg. A fall in systemic blood pressure, due to peripheral vasodilation, can be detected at a dose of 0.5 mg/kg with variable but not major effects on heart rate. The diastolic pressure decrease is larger than that for systolic pressure. The respiratory rate and depth are slightly increased, probably due to stimulation of carotid sinus chemoreceptors. An oral dose of 2.0 mg/kg in the dog increases coronary blood flow by 246% for 5 hours.10

In the presence of aneroid ring constriction of coronary vessels, chronic administration of dipyridamole in dogs, rabbits and pigs increases the number and diameter of collateral coronary vessels.42 The rate of mortality in these animals is decreased compared to non-drug treated controls. Even in the absence of a chronic hypoxic stimulus, chronic dipyridamole treatment produces greater flow across intercoronary vessels in response to acute ligation of a coronary mainstein artery, compared to controls.11,31 When blood flow through ischemic areas was measured in experimentally produced infarctions, acute intravenous dipyridamole has produced both increases and decreases, as well as no change in flow.3,10,20,21 Intravenous dipyridamole, 10 mg/hr for 6 hours, decreased the size of experimental infarctions in dogs by 76% compared to saline-treated controls.3

TOXICOLOGY

Acute Toxicity of Dipyridamole, ASA and their Combination

<table>
<thead>
<tr>
<th>Substance</th>
<th>Species</th>
<th>Route of Administration</th>
<th>LD₅₀ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipyridamole</td>
<td>Rat</td>
<td>p.o.</td>
<td>6000</td>
</tr>
<tr>
<td>Dipyridamole</td>
<td>Rat</td>
<td>i.v.</td>
<td>200</td>
</tr>
<tr>
<td>Dipyridamole</td>
<td>Dog</td>
<td>p.o.</td>
<td>400</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>Rat</td>
<td>p.o.</td>
<td>1820</td>
</tr>
<tr>
<td>Mouse (male)</td>
<td>p.o.</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Mouse (female)</td>
<td>p.o.</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Rat (male)</td>
<td>p.o.</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Rat (female)</td>
<td>p.o.</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>Mouse (male)</td>
<td>i.p.</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Mouse (female)</td>
<td>i.p.</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>Rat (male)</td>
<td>i.p.</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td>Rat (female)</td>
<td>i.p.</td>
<td>875-950</td>
<td></td>
</tr>
<tr>
<td>Mouse (male)</td>
<td>p.o.</td>
<td>3000-5000</td>
<td></td>
</tr>
<tr>
<td>Mouse (female)</td>
<td>p.o.</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Mouse (male)</td>
<td>p.o.</td>
<td>3000-5000</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Mouse (female)</td>
<td>p.o.</td>
<td>5000</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Rat (male)</td>
<td>p.o.</td>
<td>5000</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Rat (female)</td>
<td>i.p.</td>
<td>910</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Mouse (male)</td>
<td>i.p.</td>
<td>1200</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Mouse (female)</td>
<td>i.p.</td>
<td>1050</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Rat (male)</td>
<td>i.p.</td>
<td>1230</td>
</tr>
<tr>
<td>Dipyridamole/ASA*</td>
<td>Rat (female)</td>
<td>p.o.</td>
<td>875-950</td>
</tr>
<tr>
<td>Mouse (male)</td>
<td>p.o.</td>
<td>3000-5000</td>
<td></td>
</tr>
<tr>
<td>Mouse (female)</td>
<td>p.o.</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Rat (male)</td>
<td>p.o.</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Rat (female)</td>
<td>p.o.</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>Mouse (male)</td>
<td>i.p.</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Mouse (female)</td>
<td>i.p.</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>Rat (male)</td>
<td>i.p.</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td>Rat (female)</td>
<td>p.o.</td>
<td>875-950</td>
<td></td>
</tr>
</tbody>
</table>

*dipyridamole/ASA mixed in a ratio of 1/5, weight/weight

After administration of dipyridamole, signs of toxicity among the survivors were ataxia and depression, while in those that died; prostration and tonic convulsions were also seen. After ASA, lethargy fluctuating with restlessness, bleeding through the nose and respiratory distress occurred. Some animals died in a prostrate position without any preceding agitation.
Symptomatology following administration of the combination dipyridamole/ASA, (1/5), did not differ appreciably from the toxic signs observed with either substance alone.

Subacute intravenous administration of dipyridamole to dogs at levels of 1 and 10 mg/kg/day for 4 weeks did not produce significant signs of toxicity. Oral dipyridamole (20, 40, 60, 80 mg/kg/day) administered for 13 weeks to beagles produced no toxic effect at the low dose but resulted in kidney toxicity with increasing doses. This was manifested by weight loss, increased blood urea and serum creatinine and epithelial nephritis at the high dose. The abnormalities were rapidly reversible upon discontinuation of treatment. When dogs were treated orally for 26 weeks with dipyridamole at doses of 10, 20 and 40 mg/kg/day, only occasional emesis occurred at the high dose level. Hematological, biochemical and urinary analyses were within normal limits. Rats fed dipyridamole in the diet at levels of 25, 75 and 225 mg/kg/day over a period of 27 weeks showed no signs of toxicity.

Treatment of rats for 3 months with the combination dipyridamole/ASA (1/5) at oral doses of 25, 100 and 400 mg/kg resulted in no drug-related toxicity except for a delay in body weight development in the high dose group. In chronic toxicity studies of 6 months duration in rats and dogs, dipyridamole/ASA (1/4) had no toxic effect at doses of 25 and 100 mg/kg in either species.

With increasing dose (200 and 400 mg/kg/day), renal and gastrointestinal lesions appeared along with associated biochemical changes. At the high dose in dogs, all animals were dead at 3 months. Control groups of dogs received ASA, 80 and 160 mg/kg/day. The lesions observed were similar to toxic signs in the combination treatment groups except for the nephritis and renal changes seen in the 200 and 400 mg/kg dose groups of dogs.

Two year carcinogenicity studies of dipyridamole in mouse and rat in doses up to 75 mg/kg demonstrated no tumorogenic effect of the drug. The dipyridamole/ASA combination (1/5) also produced no evidence of carcinogenicity in either rats or mice at oral doses up to 450 mg/kg. Mutagenicity assays (cytogenetic, microorganism, dominant lethal and micronucleus tests) of both dipyridamole alone and the dipyridamole/ASA combination (1/15) could not demonstrate any mutagenic potential of these compounds.
REFERENCES

13. Flower RJ, Moncada S, Vane JR. Analgesic antipyretics and anti-inflammatory agents; drugs employed in the treatment of gout. pg. 693-695 in The Pharmacological Basis of

PART III: CONSUMER INFORMATION

Pr NOVO-DIPIRADOL
Dipyridamole

This leaflet is part III of a three-part “Product Monograph” published when NOVO-DIPIRADOL was approved for sale in Canada and is designed specifically for Consumers. This leaflet is a summary and will not tell you everything about NOVO-DIPIRADOL. Contact your doctor or pharmacist if you have any questions about the drug.

ABOUT THIS MEDICATION

What the medication is used for:
NOVO-DIPIRADOL tablets are indicated for the prevention of blood clot complications that can occur after prosthetic heart valve surgery.

What it does:
NOVO-DIPIRADOL dilates the blood vessels of the heart muscle and regulates increased blood cell tendency to stick together. It works by preventing excessive blood clotting.

When it should not be used:
NOVO-DIPIRADOL should not be used by patients with allergic reactions to dipyridamole or any component of the drug.

What the medicinal ingredient is:
Dipyridamole

What the important nonmedicinal ingredients are:
Magnesium stearate, microcrystalline cellulose, pregelatinized starch, silica, sodium lauryl sulfate, sodium starch glycolate, starch. The sugar coating contains: acacia, acetylated monoglycerides, colloidal silicon dioxide, ethylcellulose, hydroxypropyl methylcellulose, sucrose, t alc, titanium dioxide and:
25 mg: FD & C Yellow No. 6
50 mg: FD & C Yellow No. 6 A1 Lake, FD & C Red No. 40 A1 Lake and FD & C Blue No. 2 A1 Lake
75 mg: FD & C Yellow No. 6 A1 Lake
100 mg: FD & C Blue No. 2

What dosage forms it comes in:
NOVO-DIPIRADOL comes as a tablet to take by mouth. Tablets are 25 mg, 50 mg, 75 mg or 100 mg

WARNING AND PRECAUTIONS

BEFORE you use NOVO-DIPIRADOL talk to your doctor or pharmacist:
• If you are allergic to dipyridamole or any other drug.
• If you are taking any other prescription or non prescription drugs, especially aspirin (ASA).
• If you have or ever had any heart problems, a low blood pressure or history of breathing problems.
• If you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking NOVO-DIPIRADOL, call your doctor.
• If you are having surgery, including dental surgery, tell the doctor or dentist you are taking NOVO-DIPIRADOL

Worsening of symptoms of heart disease have been observed in some patients.

INTERACTIONS WITH THIS MEDICATION

Drugs that may interact with NOVO-DIPIRADOL include: Adenosine, other drugs that prevent blood clotting, blood pressure lowering drugs, and cholinesterase inhibitors

PROPER USE OF THIS MEDICATION

The usual dose is 100mg taken four times daily, one hour before meals. Sometimes a lower dose of 100 mg daily NOVO-DIPIRADOL is taken together with 1.0 g of acetylsalicylic acid (ASA). Follow the directions given by your doctor carefully, and ask your doctor or pharmacist if you have any questions.

Overdose:
In case of overdose call your doctor immediately or call 911.

Missed Dose:
Take the missed dose as soon as you remember it. However, if it is almost time for the next dose, skip the missed dose and continue your regular dosing schedule. Do not take a double dose to make up for a missed one.

SIDE EFFECTS A WHAT TO DO ABOUT THEM

Side effects from NOVO-DIPIRADOL at prescribed doses are usually minimal and transient. Mild occasional stomach upset can be avoided by taking the tablets with glass of milk. Tell your doctor if any of these symptoms are severe or do not go away after a while: dizziness, stomach pain, headache, rash, diarrhea, vomiting, feeling warmth, or weakness. If you experience any of the following call your doctor immediately: unusual bleeding or bruising, chest pain, increased heart rate, low blood pressure, or allergic reactions – difficulty breathing, severe bronchospasm or edema.

On rare occasions, when side effects have been persistent or intolerable stopping the medication has resolved the undesirable side effects. Do not stop taking the tablets without talking to your doctor

<table>
<thead>
<tr>
<th>Symptom/Effect</th>
<th>Talk with your doctor or pharmacist</th>
</tr>
</thead>
</table>

22
IMPORTANT – PLEASE READ

<table>
<thead>
<tr>
<th>Only if severe of persistent</th>
<th>Call immediately in all cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dizziness, stomach pain, headache, rash, diarrhoea, vomiting, feeling warmth, weakness.</td>
<td>✓</td>
</tr>
<tr>
<td>Unusual bleeding or bruising, chest pain, increased heart rate, low blood pressure, allergic reaction (difficulty breathing, severe bronchospasm or oedema)</td>
<td>✓</td>
</tr>
</tbody>
</table>

This is not a complete list of side effects. For any unexpected effects while taking NOVO-DIPIRADOL, contact your doctor or pharmacist.

HOW TO STORE IT

Keep this medication in the container it came in, tightly closed, and out of reach of children. Store the bottles at room temperature (15 - 30°C) and unit doses between 15 - 25°C and away from excess heat and moisture (not in the bathroom). Protect from light and freezing.

Do not let anyone else take your medication.

REPORTING SUSPECTED SIDE EFFECTS

To monitor drug safety, Health Canada collects information on serious and unexpected effects of drugs. If you suspect you have had a serious or unexpected reaction to this drug you may notify Health Canada by:

- toll-free telephone: 866-234-2345
- toll-free fax: 866-678-6789
- By email: cadrmp@hc-sc.gc.ca

By regular mail:
National AR Centre
Marketed Health Products Safety and Effectiveness
Information Division
Marketed Health Products Directorate
Tunney’s Pasture, AL 0701C
Ottawa ON K1A 0K9

NOTE: Before contacting Health Canada, you should contact your physician or pharmacist

MORE INFORMATION

This document plus the full product monograph, prepared for health professionals can be found by contacting Novopharm Limited at:
1-800-268-4127 ext. 5005

or druginfo@novopharm.com

This leaflet was prepared by:
Novopharm Limited
30 Novopharm Court
Toronto, Ontario
Canada, M1B 2K9

Date of preparation: October 26, 2006