PRODUCT MONOGRAPH

ANALGESIC AND MUSCLE RELAXANT

Methocarbamol and Ibuprofen caplets

Caplets, 500 mg/400 mg

Muscle Relaxant/Analgesic

Pharmascience Inc.
6111 Royalmount Ave., Suite 100
Montréal, Québec
H4P 2T4

Date of Revision: December 31, 2012

Submission Control No: 158709
Table of Contents

PART I: HEALTH PROFESSIONAL INFORMATION ... 3
 SUMMARY PRODUCT INFORMATION .. 3
 INDICATIONS AND CLINICAL USE ... 3
 CONTRAINDICATIONS ... 4
 WARNINGS AND PRECAUTIONS .. 5
 ADVERSE REACTIONS ... 15
 DRUG INTERACTIONS ... 19
 DOSAGE AND ADMINISTRATION .. 22
 OVERDOSAGE .. 23
 ACTION AND CLINICAL PHARMACOLOGY .. 26
 STORAGE AND STABILITY .. 29
 DOSAGE FORMS, COMPOSITION AND PACKAGING 29

PART II: SCIENTIFIC INFORMATION .. 30
 PHARMACEUTICAL INFORMATION ... 30
 CLINICAL TRIALS ... 31
 DETAILED PHARMACOLOGY .. 36
 TOXICOLOGY .. 37
 REFERENCES .. 41

PART III: CONSUMER INFORMATION ... 50
ANALGESIC AND MUSCLE RELAXANT
Methocarbamol and Ibuprofen caplets

PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form / Strength</th>
<th>All Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Caplet, 500 mg/400 mg</td>
<td>Colloidal Silicon Dioxide, Croscarmellose Sodium, FD&C Blue No. 2, Hypromellose, Magnesium Stearate, Microcrystalline Cellulose, Polyethylene Glycol, Povidone, Pregelatinized Starch, Iron Oxide Red, Sodium Lauryl Sulfate, and Sodium Starch Glycolate</td>
</tr>
</tbody>
</table>

INDICATIONS AND CLINICAL USE

ANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) is indicated for the following:

- Adults and Children over 12 years of age: For effective relief of pain associated with muscle spasms, such as back pain, tense neck muscles, strains and sprains.

For patients with an increased risk of developing CV and/or GI adverse events, other management strategies that do NOT include the use of NSAIDs should be considered first. (see CONTRAINDICATIONS and WARNINGS AND PRECAUTIONS)

ANALGESIC AND MUSCLE RELAXANT is a nonprescription drug. Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for cardiovascular or gastrointestinal adverse events. If pain persists for more than 5 days consult a health care provider.

Methocarbamol has been studied in muscle relaxation models including tetanus therapy\(^1\), muscle spasms\(^2\), painful muscle conditions\(^3\)\(^-\)\(^6\), and in combination with analgesics\(^7\)\(^-\)\(^9\), with positive results. In gynecological postoperative patients, methocarbamol reduced the use of narcotics and other sedatives for pain and discomfort.\(^4\)
Ibuprofen has been studied in pain models including dental10-17, dysmenorrhea18-23, fever24-26, headache27-28, migraine29, muscle aches30, post surgery31-32, soft tissue injury33-34, and sore throat35, with effective pain relief results.

Geriatrics:
Evidence from clinical studies and post-market experience suggests that use in the geriatric population is associated with differences in safety (see *WARNINGS AND PRECAUTIONS*).

Pediatrics (≤ 12 years of age):
Safety and efficacy have not been established in the pediatric population.

CONTRAINDICATIONS

ANALGESIC AND MUSCLE RELAXANT is contraindicated in:

- the peri-operative setting of coronary artery bypass graft surgery (CABG). Although ANALGESIC AND MUSCLE RELAXANT has NOT been studied in this patient population, a selective COX-2 inhibitor NSAID studied in such a setting has led to an increased incidence of cardiovascular/thromboembolic events, deep surgical infections and sternal wound complications.
- the third trimester of pregnancy, because of risk of premature closure of the ductus arteriosus and prolonged parturition
- severe uncontrolled heart failure
- known hypersensitivity to methocarbamol or ibuprofen, or to any of the components/excipients. There is a potential for cross-reactivity between different NSAIDs and ibuprofen, and patients sensitive to other carbamate derivatives and methocarbamol (see *WARNINGS AND PRECAUTIONS - Hypersensitivity Reactions - Anaphylactoid Reactions*).
- history of asthma, urticaria, or allergic-type reactions after taking ASA or other NSAIDs (i.e. complete or partial syndrome of ASA-intolerance - rhinosinusitis, urticaria/angioedema, nasal polyps, asthma). Fatal anaphylactoid reactions have occurred in such individuals. Individuals with the above medical problems are at risk of a severe reaction even if they have taken NSAIDs in the past without any adverse reaction.
- active gastric / duodenal / peptic ulcer, active GI bleeding
- cerebrovascular bleeding or other bleeding disorders
- inflammatory bowel disease
- severe liver impairment or active liver disease
- severe renal impairment (creatinine clearance < 30 mL/min or 0.5 mL/sec) or deteriorating renal disease (individuals with lesser degrees of renal impairment are at risk of deterioration
of their renal function when using NSAIDs and must be monitored) (see WARNINGS AND PRECAUTIONS - Renal).

- known hyperkalemia (see WARNINGS AND PRECAUTIONS - Renal - Fluid and Electrolyte Balance)

WARNINGS AND PRECAUTIONS

Risk of Cardiovascular (CV) Adverse Events: Ischemic Heart Disease, Cerebrovascular Disease, Congestive Heart Failure (NYHA II-IV) (see WARNINGS AND PRECAUTIONS - Cardiovascular).

ANALGESIC AND MUSCLE RELAXANT contains ibuprofen, a non-steroidal anti-inflammatory drug (NSAID). Use of some NSAIDs is associated with an increased incidence of cardiovascular adverse events (such as myocardial infarction, stroke or thrombotic events) which can be fatal. The risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk.

Caution should be exercised in prescribing ANALGESIC AND MUSCLE RELAXANT to any patient with ischemic heart disease (including but NOT limited to acute myocardial infarction, history of myocardial infarction and/or angina), cerebrovascular disease (including but NOT limited to stroke, cerebrovascular accident, transient ischemic attacks and/or amaurosis fugax) and/or congestive heart failure (NYHA II-IV).

Use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, can promote sodium retention in a dose-dependent manner, through a renal mechanism, which can result in increased blood pressure and/or exacerbation of congestive heart failure (see also WARNINGS AND PRECAUTIONS - Renal - Fluid and Electrolyte Balance).

Randomized clinical trials with ibuprofen have not been designed to detect differences in cardiovascular events in a chronic setting. Therefore, caution should be exercised when prescribing ANALGESIC AND MUSCLE RELAXANT.

Risk of Gastrointestinal (GI) Adverse Events (see WARNINGS AND PRECAUTIONS - Gastrointestinal).

Use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, is associated with an increased incidence of gastrointestinal adverse events (such as peptic/duodenal ulceration, perforation, obstruction and gastrointestinal bleeding).
General

Frail or debilitated patients may tolerate side effects less well and therefore special care should be taken in treating this population. **Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for an adverse event. If pain persists for more than 5 days consult a health care provider.** Caution should be used in the treatment of elderly patients who are more likely to be suffering from impaired renal, hepatic or cardiac function. For high risk patients, alternate therapies that do not involve NSAIDs should be considered.

Ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT is NOT recommended for use with other NSAIDs, with the exception of low-dose ASA for cardiovascular prophylaxis, because of the absence of any evidence demonstrating synergistic benefits and the potential for additive adverse reactions (see **DRUG INTERACTIONS - Drug/Drug Interactions - Acetylsalicylic acid (ASA) or other NSAIDs**).

Carcinogenesis and Mutagenesis

(See **PART II – TOXICOLOGY**)

Cardiovascular

ANALGESIC AND MUSCLE RELAXANT contains ibuprofen, a non-steroidal anti-inflammatory drug (NSAID). Use of some NSAIDs is associated with an increased incidence of cardiovascular adverse events (such as myocardial infarction, stroke or thrombotic events) which can be fatal. The risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk.

Caution should be exercised in prescribing ANALGESIC AND MUSCLE RELAXANT to patients with risk factors for cardiovascular disease, cerebrovascular disease or renal disease, such as any of the following (NOT an exhaustive list):

- Hypertension
- Dyslipidemia / Hyperlipidemia
- Diabetes Mellitus
- Congestive Heart Failure (NYHA I)
- Coronary Artery Disease (Atherosclerosis)
- Peripheral Arterial Disease
- Smoking
- Creatinine Clearance < 60 mL/min or 1 mL/sec
Use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, can lead to new hypertension or can worsen pre-existing hypertension, either of which may increase the risk of cardiovascular events as described above. Thus blood pressure should be monitored regularly. Consideration should be given to discontinuing ANALGESIC AND MUSCLE RELAXANT should hypertension either develop or worsen with its use.

Use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, can induce fluid retention and edema, and may exacerbate congestive heart failure, through a renally-mediated mechanism (see WARNINGS AND PRECAUTIONS - Renal - Fluid and Electrolyte Balance).

For patients with a high risk of developing an adverse CV event, other management strategies that do NOT include the use of NSAIDs should be considered first. Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for an adverse event. If pain persists for more than 5 days consult a health care provider.

Congestive heart failure in patients with marginal cardiac function, elevated blood pressure and palpitations have been reported following ibuprofen administration. 36

Endocrine and Metabolism

Corticosteroids: Patients with thyroid disease should not take this drug unless directed by a physician.

Gastrointestinal (GI)

Serious GI toxicity (sometimes fatal), such as peptic/duodenal ulceration, inflammation, perforation, obstruction and gastrointestinal bleeding, can occur at any time, with or without warning symptoms, in patients treated with NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT. Minor upper GI problems, such as dyspepsia, commonly occur at any time. Health care providers should remain alert for ulceration and bleeding in patients treated with ANALGESIC AND MUSCLE RELAXANT, even in the absence of previous GI tract symptoms. Most spontaneous reports of fatal GI events are in elderly or debilitated patients and therefore special care should be taken in treating this population. Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for an adverse event. If pain persists for more than 5 days consult a health care provider. For high risk patients, alternate therapies that do not involve NSAIDs should be considered (see WARNINGS AND PRECAUTIONS - Special Populations - Geriatrics).

Patients should be informed about the signs and/or symptoms of serious GI toxicity and instructed to discontinue using ANALGESIC AND MUSCLE RELAXANT and seek emergency
medical attention if they experience any such symptoms. The utility of periodic laboratory monitoring has NOT been demonstrated, nor has it been adequately assessed. Most patients who develop a serious upper GI adverse event on NSAID therapy have no symptoms. Upper GI ulcers, gross bleeding or perforation, caused by NSAIDs, appear to occur in approximately 1% of patients treated for 3-6 months, and in about 2-4% of patients treated for one year. These trends continue, thus increasing the likelihood of developing a serious GI event at some time during the course of therapy. Even short-term therapy has its risks.

Caution should be taken if prescribing ANALGESIC AND MUSCLE RELAXANT to patients with a prior history of peptic / duodenal ulcer disease or gastrointestinal bleeding as these individuals have a greater than 10-fold higher risk for developing a GI bleed when taking a NSAID than patients with neither of these risk factors. Other risk factors for GI ulceration and bleeding include the following: Helicobacter pylori infection, increased age, prolonged use of NSAID therapy, excess alcohol intake, smoking, poor general health status or concomitant therapy with any of the following:

- Anti-coagulants (e.g. warfarin)
- Anti-platelet agents (e.g. ASA, clopidogrel)
- Oral corticosteroids (e.g. prednisone)
- Selective Serotonin Reuptake Inhibitors (SSRIs) (e.g. citalopram, fluoxetine, paroxetine, sertraline)

There is no definitive evidence that the concomitant administration of histamine H2-receptor antagonists and/or antacids will either prevent the occurrence of gastrointestinal side effects or allow the continuation of ANALGESIC AND MUSCLE RELAXANT therapy when and if these adverse reactions appear.

Combination methocarbamol/ibuprofen should be given under close medical supervision to patients prone to gastrointestinal irritation, particularly those with history of peptic ulcer, diverticulosis or ulcerative colitis and Crohn's Disease. In these cases the physician must weigh the benefits of treatment against the possible hazards.

Genitourinary

Some NSAIDs are associated with persistent urinary symptoms (bladder pain, dysuria, urinary frequency), hematuria or cystitis. The onset of these symptoms may occur at any time after the initiation of therapy with a NSAID. Should urinary symptoms occur, in the absence of an alternate explanation, treatment with ANALGESIC AND MUSCLE RELAXANT should be stopped to ascertain if symptoms disappear. This should be done before urological investigations or treatments are carried out.

Hematologic

NSAIDs inhibiting prostaglandin biosynthesis interfere with platelet function to varying degrees; patients who may be adversely affected by such an action, such as those on anti-coagulants or
suffering from haemophilia or platelet disorders should be carefully observed when ANALGESIC AND MUSCLE RELAXANT is administered.

Anti-coagulants: Numerous studies have shown that the concomitant use of NSAIDs and anti-coagulants increases the risk of bleeding. Concurrent therapy of ANALGESIC AND MUSCLE RELAXANT with warfarin requires close monitoring of the international normalized ratio (INR).

Even with therapeutic INR monitoring, increased bleeding may occur.

Anti-platelet Effects: NSAIDs inhibit platelet aggregation and have been shown to prolong bleeding time in some patients. Unlike acetylsalicylic acid (ASA), their effect on platelet function is quantitatively less, or of shorter duration, and is reversible.

Ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT and other NSAIDs have no proven efficacy as anti-platelet agents and should NOT be used as a substitute for ASA or other anti-platelet agents for prophylaxis of cardiovascular thromboembolic diseases. Anti-platelet therapies (e.g., ASA) should NOT be discontinued. There is some evidence that use of NSAIDs with ASA can markedly attenuate the cardioprotective effects of ASA (see **DRUG INTERACTIONS - Drug-Drug Interactions - Acetylsalicylic Acid (ASA) or other NSAIDs**).

Concomitant administration of ANALGESIC AND MUSCLE RELAXANT with low dose ASA increases the risk of GI ulceration and associated complications.

Blood dyscrasias: Blood dyscrasias (such as neutropenia, leukopenia, thrombocytopenia, aplastic anemia and agranulocytosis) associated with the use of NSAIDs are rare, but could occur with severe consequences.

Anemia is sometimes seen in patients receiving NSAIDs, including ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT. This may be due to fluid retention, GI blood loss, or an incompletely described effect upon erythropoiesis. Patients on long-term treatment with NSAIDs, including ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, should have their hemoglobin or hematocrit checked if they exhibit any signs or symptoms of anemia or blood loss.

Hepatic/Biliary/Pancreatic

As with other NSAIDs, including ibuprofen, borderline elevations of one or more liver enzyme tests (AST, ALT, alkaline phosphatase) may occur in up to 15% of patients. These abnormalities may progress, may remain essentially unchanged, or may be transient with continued therapy.

The frequency of acute liver injury among 625 307 people, who received NSAIDs in England and Wales between 1987 and 1991, was examined. There were 311 716 patients who were prescribed ibuprofen. The incidence of acute liver injury among ibuprofen users was 1.6/100 000; this was the lowest incidence among the 8 NSAIDs studied and was significantly lower than the incidence among users of ketoprofen, piroxicam, fenbufen or sulindac. For NSAID users as a group, the only factors that had an independent effect on the occurrence of acute liver injury were the simultaneous use of hepatotoxic medication or the presence of...
rheumatoid arthritis. Based on these data, the short-term use of ibuprofen as an analgesic/antipyretic should not be of concern regarding the development of liver disease.

A patient with symptoms and/or signs suggesting liver dysfunction, or in whom an abnormal liver function test has occurred, should be evaluated for evidence of the development of a more severe hepatic reaction while on therapy with this drug. Severe hepatic reactions including jaundice and cases of fatal hepatitis, liver necrosis and hepatic failure, some of them with fatal outcomes, have been reported with NSAIDs.

Although such reactions are rare, if abnormal liver tests persist or worsen, if clinical signs and symptoms consistent with liver disease develop (e.g., jaundice), or if systemic manifestations occur (e.g., eosinophilia, associated with rash, etc.), this drug should be discontinued.

During long-term therapy, liver function tests should be monitored periodically. If there is a need to prescribe this drug in the presence of impaired liver function, it must be done under strict observation.

Hypersensitivity Reactions

Anaphylactoid Reactions: As with NSAIDs in general, anaphylactoid reactions have occurred in patients without known prior exposure to ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT. In post-marketing experience, rare cases of anaphylactic/anaphylactoid reactions and angioedema have been reported in patients receiving ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT. ANALGESIC AND MUSCLE RELAXANT should NOT be given to patients with the ASA-triad. This symptom complex typically occurs in asthmatic patients who experience rhinitis with or without nasal polyps, or who exhibit severe, potentially fatal bronchospasm after taking ASA or other NSAIDs (see CONTRAINDICATIONS).

ASA-Intolerance: ANALGESIC AND MUSCLE RELAXANT should NOT be given to patients with complete or partial syndrome of ASA-intolerance (rhinosinusitis, urticaria/angioedema, nasal polyps, asthma) in whom asthma, anaphylaxis, urticaria/angioedema, rhinitis or other allergic manifestations are precipitated by ASA or other NSAIDs. Fatal anaphylactoid reactions have occurred in such individuals. As well, individuals with the above medical problems are at risk of a severe reaction even if they have taken NSAIDs in the past without any adverse reaction (see CONTRAINDICATIONS).

Cross-sensitivity: Patients sensitive to one NSAID may be sensitive to any of the other NSAIDs as well. There is potential for cross-reactivity between different NSAIDs and ibuprofen, and patients sensitive to other carbamate derivatives and methocarbamol (see CONTRAINDICATIONS).

Serious Skin Reactions: (see WARNINGS AND PRECAUTIONS – Skin)
Immune

(see WARNINGS AND PRECAUTIONS - Infection - Aseptic Meningitis)

Infection

Ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, in common with other NSAIDs, may mask signs and symptoms of an underlying infectious disease.

Aseptic Meningitis: Rarely, with some NSAIDs, the symptoms of aseptic meningitis (stiff neck, severe headaches, nausea and vomiting, fever or clouding of consciousness) have been observed. Patients with autoimmune disorders (systemic lupus erythematosus, mixed connective tissue diseases, etc.) seem to be pre-disposed. Therefore, in such patients, the health care provider must be vigilant to the development of this complication.

Neurologic

Some patients may experience drowsiness, dizziness, blurred vision, vertigo, tinnitus, hearing loss, insomnia or depression with the use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT. If patients experience such adverse reaction(s), they should exercise caution in carrying out activities that require alertness.

Methocarbamol has potential to cause drowsiness and dizziness. The patient should be cautioned against the operation of motor vehicles or machinery. Since methocarbamol may possess a general CNS depressant effect, patients taking ANALGESIC AND MUSCLE RELAXANT should be cautioned about combined effects with alcohol and other CNS depressants.

Methocarbamol may produce false positive tests for urinary 5-hydroxyindoleacetic acid (5-HIAA) and vanillymandelic acid (VMA).

Ophtalmologic

Blurred and/or diminished vision has been reported with the use of NSAIDs. If such symptoms develop ANALGESIC AND MUSCLE RELAXANT should be discontinued and an ophthalmologic examination performed. Ophthalmologic examination should be carried out at periodic intervals in any patient receiving ANALGESIC AND MUSCLE RELAXANT for an extended period of time.

Peri-Operative Considerations

(see CONTRAINDICATIONS - Coronary Artery Bypass Graft Surgery)

Psychiatric

(see WARNINGS AND PRECAUTIONS – Neurologic)

Renal
Long-term administration of NSAIDs to animals has resulted in renal papillary necrosis and other abnormal renal pathology. In humans, there have been reports of acute interstitial nephritis, hematuria, low grade proteinuria and occasionally nephrotic syndrome.

Renal insufficiency due to NSAID use is seen in patients with pre-renal conditions leading to reduction in renal blood flow or blood volume. Under these circumstances, renal prostaglandins help maintain renal perfusion and glomerular filtration rate (GFR). In these patients, administration of a NSAID may cause a reduction in prostaglandin synthesis leading to impaired renal function. Patients at greatest risk of this reaction are those with pre-existing renal insufficiency (GFR < 60 mL/min or 1 mL/s), dehydrated patients, patients on salt restricted diets, those with congestive heart failure, cirrhosis, liver dysfunction, taking angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, cyclosporine, diuretics, and those who are elderly. Serious or life-threatening renal failure has been reported in patients with normal or impaired renal function after short-term therapy with NSAIDs. Even patients at risk who demonstrate the ability to tolerate a NSAID under stable conditions may decompensate during periods of added stress (e.g., dehydration due to gastroenteritis). Discontinuation of NSAIDs is usually followed by recovery to the pre-treatment state.

Caution should be used when initiating treatment with NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, in patients with considerable dehydration. Such patients should be rehydrated prior to initiation of therapy. Caution is also recommended in patients with pre-existing kidney disease.

A number of factors appear to increase the risk of renal toxicity. In comparative clinical trials involving 7,624 ibuprofen-treated, 2,822 ASA-treated and 2,843 placebo-treated patients, adverse reactions involving renal function were reported by 0.6% of the ibuprofen group, 0.3% of the ASA group and 0.1% of the placebo group. The analysis included data from trials which employed doses greater than 1,200 mg, used for longer periods than OTC recommendations and by patients being treated for serious conditions. Ibuprofen and its metabolites are eliminated primarily by the kidneys; therefore the drug should be used with great caution in patients with impaired renal function. Methocarbamol may also affect renal function if therapy lasts 5 days or more. Kidney function should be monitored periodically if treatment goes beyond the recommended 5 days.

Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1,200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for an adverse event.

Advanced Renal Disease: (see CONTRAINDICATIONS)

Fluid and Electrolyte Balance: Use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, can promote sodium retention in a dose-dependent manner, which can lead to fluid retention and edema, and consequences of increased blood pressure and exacerbation of congestive heart failure. Thus, caution should be exercised in prescribing ANALGESIC AND MUSCLE RELAXANT in patients with a history of congestive heart
failure, compromised cardiac function, hypertension, increased age or other conditions predisposing to fluid retention (see WARNINGS AND PRECAUTIONS - Cardiovascular).

Use of NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, can increase the risk of hyperkalemia, especially in patients with diabetes mellitus, renal failure, increased age, or those receiving concomitant therapy with adrenergic blockers, angiotensin-converting enzyme inhibitors, angiotensin-II receptor antagonists, cyclosporine, or some diuretics.

Electrolytes should be monitored periodically (see CONTRAINDICATIONS).

Respiratory

ASA-induced asthma is an uncommon but very important indication of ASA and NSAID sensitivity. It occurs more frequently in patients with asthma who have nasal polyps.

Sexual Function/Reproduction

The use of ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, as with any drug known to inhibit cyclooxygenase/prostaglandin synthesis, may impair fertility and is not recommended in women attempting to conceive. Therefore, in women who have difficulties conceiving, or who are undergoing investigation of infertility, withdrawal of ANALGESIC AND MUSCLE RELAXANT should be considered.

Skin

In rare cases, serious skin reactions such as Stevens-Johnson syndrome, toxic epidermal necrolysis, exfoliative dermatitis and erythema multiforme have been associated with the use of some NSAIDs. Because the rate of these reactions is low, they have usually been noted during post-marketing surveillance in patients taking other medications also associated with the potential development of these serious skin reactions. Thus, causality is NOT clear. These reactions are potentially life threatening but may be reversible if the causative agent is discontinued and appropriate treatment instituted. Patients should be advised that if they experience a skin rash they should discontinue their NSAID and contact their physician for assessment and advice, including which additional therapies to discontinue.

Special Populations

Pregnant Women: ANALGESIC AND MUSCLE RELAXANT is CONTRAINDICATED for use during the third trimester of pregnancy because of risk of premature closure of the ductus arteriosus and the potential to prolong parturition (see PART II - TOXICOLOGY).

Caution should be exercised in prescribing ANALGESIC AND MUSCLE RELAXANT during the first and second trimesters of pregnancy (see PART II - TOXICOLOGY).
Inhibition of prostaglandin synthesis may adversely affect pregnancy and/or the embryo-foetal development. Data from epidemiological studies suggest an increased risk of miscarriage and of cardiac malformation after use of a prostaglandin synthesis inhibitor in early pregnancy.

In animals, administration of a prostaglandin synthesis inhibitor has been shown to result in increased pre- and post-implantation loss and embryo-foetal lethality. In addition, increased incidences of various malformations, including cardiovascular, have been reported in animals given a prostaglandin synthesis inhibitor during the organogenetic period.

Nursing Women:

Methocarbamol was detected in the breast milk of dogs. Assuming small amounts of methocarbamol are also excreted in human breast milk; it is doubtful any adverse clinical effects would be seen in the nursing infant. Newborns with neonatal tetanus have been treated with larger doses of intravenous or oral methocarbamol without ill effects from the drug.

The high protein binding and lower pH of breast milk versus plasma tend to inhibit the excretion of ibuprofen into breast milk. One study showed an ibuprofen concentration of 13 ng/mL in breast milk 30 minutes following the ingestion by the nursing mother of 400 mg of ibuprofen. The milk:plasma ratio was 1:126. This translates to an infant exposure of 0.0008% of the maternal dose. No adverse effect has been detected in children 6 months of age who were administered ibuprofen.

Pediatrics: (see CONTRAINDICATIONS)

The combination methocarbamol/ibuprofen has not been studied in children. Furthermore, the safety and efficacy of methocarbamol (other than in the management of tetanus) in children 12 years of age and less have not been established; therefore, ANALGESIC AND MUSCLE RELAXANT should not be administered to children in this age group.

Geriatrics: Patients older than 65 years (referred to in this document as older or elderly) and frail or debilitated patients are more susceptible to a variety of adverse reactions from NSAIDs. The incidence of these adverse reactions increases with dose and duration of treatment. In addition, these patients are less tolerant to ulceration and bleeding. Most reports of fatal GI events are in this population. Older patients are also at risk of lower esophageal injury including ulceration and bleeding. Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for an adverse event. If pain persists for more than 5 days consult a health care provider.

Monitoring and Laboratory Tests

Cardiovascular: Blood pressure should be monitored regularly during therapy with ANALGESIC AND MUSCLE RELAXANT.

Hematologic: Patients on long-term treatment with NSAIDs, including ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT, should have their haemoglobin, hematocrit, and
blood cell count checked if they exhibit any signs or symptoms of anemia or blood loss or blood dyscrasia.

Concurrent therapy of ANALGESIC AND MUSCLE RELAXANT with warfarin requires close monitoring of the international normalized ratio (INR) to be certain that no change in anticoagulant dosage is necessary.36

Hepatic: Patient with symptoms and/or signs of liver dysfunction, or in whom an abnormal liver function test has occurred, should be monitored carefully for evidence of the development of a more severe hepatic reaction while on therapy with ANALGESIC AND MUSCLE RELAXANT.

Renal: Renal function should be monitored in high-risk populations, such as elderly, patients with advanced renal disease, patients with cardiovascular disease and diabetes mellitus.

Serum electrolytes should be monitored periodically during long-term therapy, especially in those who are at risk.

ADVERSE REACTIONS

Adverse Drug Reaction Overview

The types of adverse drug reactions expected with the combination of methocarbamol and ibuprofen are likely to be similar to those reported by each component individually. Central Nervous System (CNS) adverse reactions are the most commonly seen following oral administration of methocarbamol. The most commonly reported adverse reactions with ibuprofen are gastrointestinal, CNS and dermatological in nature.

This section summarizes adverse drug reaction data pooled from clinical trials, published investigations and post-marketing experience with methocarbamol and ibuprofen.

Methocarbamol

Methocarbamol may cause drowsiness44, dizziness44, blurred vision45, lightheadedness, somnolence44, vertigo44, anorexia, headache, fever, nausea, allergic reactions such as urticaria, pruritus, rash, skin eruptions, conjunctivitis with nasal congestion46.

Oral administration of methocarbamol may cause the urine in some patients, following elimination from the body, to turn brown, black, blue or green after a period of time.47
Ibuprofen – Prescription Experience

The following adverse reactions were reported in patients treated with prescription doses of ibuprofen (≥ 1 200 mg/day).

Table 1. Most Common Adverse Drug Reactions (> 1%)

<table>
<thead>
<tr>
<th>Incidence (%)</th>
<th>Adverse Drug Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>3 to 9%</td>
</tr>
<tr>
<td></td>
<td>1 to 3%</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td>3 to 9%</td>
</tr>
<tr>
<td></td>
<td>1 to 3%</td>
</tr>
<tr>
<td>Dermatologic</td>
<td>3 to 9%</td>
</tr>
<tr>
<td></td>
<td>1 to 3%</td>
</tr>
<tr>
<td>Special Senses</td>
<td>1 to 3%</td>
</tr>
<tr>
<td>Metabolic</td>
<td>1 to 3%</td>
</tr>
</tbody>
</table>

Less Common Adverse Drug Reactions (< 1%)

The following is a list of adverse drug reactions occurring in < 1% of patients receiving ibuprofen. Reactions listed below under Causal Relationship Unknown are those which occurred under circumstances where a causal relationship could not be established. However, in these rarely reported events, the possibility of a relationship to ibuprofen cannot be excluded.

Gastrointestinal: Incidence less than 1%: Gastric or duodenal ulcer with bleeding and/or perforation, gastrointestinal hemorrhage, melena, hepatitis, jaundice, abnormal liver function (SGOT, serum bilirubin and alkaline phosphatase).

Central Nervous System: Incidence less than 1%: Depression, insomnia. Causal relationship unknown: paresthesias, hallucinations, dream abnormalities. Aseptic meningitis and meningoencephalitis, in one case accompanied by eosinophilia in the cerebrospinal fluid, have been reported in patients who took ibuprofen intermittently and did not have any connective tissue disease.

Cardiovascular: Incidence less than 1%: Congestive heart failure in patients with marginal cardiac function, elevated blood pressure. Causal relationship unknown: arrhythmias (sinus tachycardia, sinus bradycardia, palpitations).

Special Senses: Incidence less than 1%: Amblyopia (blurred and/or diminished vision, scotomata and/or changes in colour vision). Any patient with eye complaints during ibuprofen therapy should have an ophthalmological examination. Causal relationship unknown: conjunctivitis, diplopia, optic neuritis.

Hematologic: Incidence less than 1%: Leukopenia, and decreases in haemoglobin and hematocrit. Causal relationship unknown: haemolytic anaemia, thrombocytopenia, granulocytopenia, bleeding episodes (e.g., purpura, epistaxis, hematuria, menorrhagia).

Renal: Causal relationship unknown: decreased creatinine clearance, polyuria, azotemia. Like other non-steroidal anti-inflammatory drugs, ibuprofen inhibits renal prostaglandin synthesis, which may decrease renal function and cause sodium retention. Renal blood flow and glomerular filtration rate decreased in patients with mild impairment of renal function who took 1 200 mg/day of ibuprofen for one week. Renal papillary necrosis has been reported. A number of factors appear to increase the risk of renal toxicity.

Hepatic: Incidence less than 1%: Hepatitis, jaundice, abnormal liver function (SGOT, serum bilirubin, and alkaline phosphatase).

Endocrine: Causal relationship unknown: gynecomastia, hypoglycaemic reaction. Menstrual delays of up to two weeks and dysfunctional uterine bleeding occurred in nine patients taking ibuprofen, 400 mg t.i.d., for three days before menses.

Ibuprofen - Nonprescription Experience (Literature)

The following adverse reactions were reported in patients treated with nonprescription doses of ibuprofen (≤ 1 200 mg/day).

One researcher conducted an extensive analysis of published data concerning the relative safety of nonprescription doses of ibuprofen and acetaminophen. Of a total of 96 randomized and blinded trials, there were 10 trials of seven days’ duration or less where the safety of both drugs was directly compared. In three of these trials, the incidence of adverse events was higher with acetaminophen; there were no reported adverse events in six trials; and one trial reported a higher incidence with ibuprofen. In this subset of 10 studies, it was reported that gastrointestinal adverse events were found to be the most common type of event reported and were predominantly dyspepsia, nausea, or vomiting. None of the GI events appeared to warrant follow-up from which the author inferred there were no serious gastrointestinal events.

It was concluded: “Although we recognise that the above mentioned data are very selective and are based on information derived from a variety of trial designs and populations, it is nonetheless instructive for indicating a relatively low incidence of severe adverse reactions with both drugs when taken at their respective nonprescription dosages.”
A double-blind, placebo-controlled study (N=1246) was conducted to prospectively evaluate the gastrointestinal tolerability, as compared to placebo, of the maximum nonprescription dose and duration (1200 mg/day for 10 consecutive days) of ibuprofen use in healthy subjects representative of a nonprescription analgesic user population. Gastrointestinal adverse experiences were similar in the placebo and ibuprofen groups (67 out of 413, 16% with placebo vs. 161 out of 833, 19% with ibuprofen). There was no difference between the two groups in the proportion of discontinuing due to a gastrointestinal event. Gastrointestinal adverse experiences reported by ≥1% of subjects were: dyspepsia, abdominal pain, nausea, diarrhea, flatulence, and constipation. Seventeen (1.4%) subjects had positive occult blood tests: their frequency was comparable between treatments. When used as directed to treat episodic pain, nonprescription ibuprofen at the maximum dose of 1200 mg/day for 10 days, is well tolerated.

In two multi-trial analyses and a meta analysis, single doses of ibuprofen had a low incidence of gastrointestinal drug reactions, comparable to that of acetaminophen and placebo. Reports from spontaneous reporting systems in the United Kingdom, France and the United States, where a prescription is not needed for ibuprofen at a daily dose up to 1200 mg, confirm the medication’s gastrointestinal safety and acceptability. A large-scale randomised trial comparing nonprescription doses of acetylsalicylic acid, acetaminophen, and ibuprofen in 8677 adults found that the rates of significant adverse reactions were: aspirin 18.7%, ibuprofen 13.7%, and acetaminophen 14.5%. Ibuprofen was not statistically different from acetaminophen. Total gastrointestinal events (including dyspepsia) and abdominal pain were less frequent with ibuprofen (4% and 2.8%, respectively) than with acetaminophen (5.3% and 3.9%) or aspirin (7.1% and 6.8%) [all p < 0.035]. It was concluded that “The overall tolerability of ibuprofen in this large-scale study was equivalent to that of paracetamol (acetaminophen) and better than that of [ASA]”.
DRUG INTERACTIONS

Drug-Drug Interactions

Acetylsalicylic Acid (ASA) or Other NSAIDs: The use of ANALGESIC AND MUSCLE RELAXANT in addition to any NSAID, including over-the-counter ones (such as ASA and ibuprofen) for analgesic and/or anti-inflammatory effects is NOT recommended because of the absence of any evidence demonstrating synergistic benefits and the potential for additive adverse reactions.

The exception is the use of low dose ASA for cardiovascular protection, when another NSAID is being used for its analgesic/anti-inflammatory effect, keeping in mind that combination NSAID therapy is associated with additive adverse reactions.

Some NSAIDs (e.g., ibuprofen) may interfere with the anti-platelet effects of low dose ASA, possibly by competing with ASA for access to the active site of cyclooxygenase-1.

Antacids: A bioavailability study has shown that there was no interference with the absorption of ibuprofen when given in conjunction with an antacid containing aluminum hydroxide and magnesium hydroxide.55

Anti-coagulants: (see WARNINGS AND PRECAUTIONS – Hematologic - Anti-coagulants)

Anti-hypertensives: NSAIDs may diminish the anti-hypertensive effect of Angiotensin Converting Enzyme (ACE) inhibitors.

Combinations of ACE inhibitors, angiotensin-II antagonists, or diuretics with NSAIDs might have an increased risk for acute renal failure and hyperkalemia. Blood pressure and renal function (including electrolytes) should be monitored more closely in this situation, as occasionally there can be a substantial increase in blood pressure.

When renal perfusion pressure is reduced both prostaglandins and angiotensin II are important mediators of renal autoregulation.56 As a class, the combination of an NSAID and angiotensin converting enzyme inhibitor theoretically may have the potential to decrease renal function. One study found a clinically significant decrease in renal function in 4 of 17 patients treated with hydrochlorothiazide and fosinopril who received ibuprofen 2 400 mg/day for one month57. In contrast, Minuz58 found no effect on the antihypertensive effect of enalapril or on plasma renin or aldosterone following two days treatment with ibuprofen 1 200 mg/day.

Two meta-analyses59-60, have observed this relationship for NSAIDs as a class and for certain NSAIDs in particular, but ibuprofen did not significantly affect blood pressure in either meta-analysis. Consistent with this lack of effect, a study by Davies et al61 showed that ibuprofen 1 600 mg/day for 14 days did not attenuate the antihypertensive effect of two ß-adrenergic blockers. Antagonism of the antihypertensive effects of calcium channel blockers by NSAIDs has been reported in some studies62-64, but not in others65-68. The discrepancies between the
results of these studies may be related to a number of factors. In positive studies, the changes in blood pressure with the addition of NSAIDs have generally been small (+4 mmHg to +8 mmHg) and the negative studies may not have been sufficiently powerful to detect such differences. Some of the negative studies were performed on healthy volunteers, who are likely to have fewer effects from NSAIDs on renal blood flow. NSAIDs have been shown to antagonize most antihypertensive drug classes. A small interaction in susceptible patients with hypertension or renal impairment upon treatment with calcium channel blockers is likely for all NSAIDs. As such, caution is advised if NSAIDs and calcium channel blockers are used concomitantly. The antihypertensive effects of calcium channel blockers may be antagonized by concomitant administration of NSAIDs.

The relationship of ibuprofen and antihypertensives is clearly not well defined. The benefits of concomitant medication should be analysed and compared to the potential risks before being prescribed. If ibuprofen is being recommended for long-term use, then periodic monitoring of blood pressure may be useful. Blood pressure monitoring is not necessary if ibuprofen is being recommended for short-term use as an analgesic.

Anti-platelet Agents (including ASA): There is an increased risk of bleeding, via inhibition of platelet function, when anti-platelet agents are combined with NSAIDs, such as ibuprofen contained in ANALGESIC AND MUSCLE RELAXANT (see **WARNINGS AND PRECAUTIONS – Hematologic - Anti-platelet Effects**).

CNS Depressants: Methocarbamol may interact with opioid analgesics, barbiturates, benzodiazepines, centrally acting muscle relaxants, chlorate hydrate, and other drugs affecting the CNS (e.g., sodium oxybate).

Coumarin-type: Numerous studies have shown that the concomitant use of NSAIDs and anticoagulants increases the risk of GI adverse events such as ulceration and bleeding. Because prostaglandins play an important role in hemostasis, and NSAIDs affect platelet function, concurrent therapy of ibuprofen with warfarin requires close monitoring to be certain that no change in anticoagulant dosage is necessary. Several short-term controlled studies failed to show that ibuprofen significantly affected prothrombin time or a variety of other clotting factors when administered to individuals on coumarin-type anticoagulants. Nevertheless, the physician should be cautious when administering ibuprofen to patients on anticoagulants.

Cyclosporine and Tacrolimus: Although this interaction has not been studied with ANALGESIC AND MUSCLE RELAXANT, co-administration of cyclosporine or tacrolimus and any NSAID may increase the nephrotoxic effect of cyclosporine or tacrolimus due to the NSAID’s effect on renal prostaglandins. The concurrent use of NSAIDs and cyclosporine has resulted in increases in cyclosporine levels, nephrotoxicity, and increased plasma creatinine concentrations. The deterioration in renal function is generally reversible upon discontinuation of the NSAID. The mechanism for observed rises in cyclosporine concentrations is not known and may not occur with all NSAIDs.

Two cases have been reported in which short-term use (three to four doses) of ibuprofen was associated with anuria or oliguria in liver transplant patients receiving tacrolimus immunosuppression. Tacrolimus concentrations were low to moderate in both patients, and the
time-course was suggestive of an interaction. A possible explanation for this interaction is a
greater dependence on real prostaglandins by patients with liver dysfunction. The production of
renal prostaglandins is inhibited by NSAIDs such as ibuprofen. If this suggested mechanism is
correct, the interaction may occur with all NSAIDs. Thus, renal function should be monitored
when ANALGESIC AND MUSCLE RELAXANT and either of these drugs is used in
combination.70

Digoxin: No interaction data is available for the co-administration of ANALGESIC AND
MUSCLE RELAXANT and digoxin. However, an increase serum digoxin level has been noted
with ibuprofen. Increased monitoring and dosage adjustments of digitalis glycoside may be
necessary during concurrent ibuprofen therapy and following discontinuation of ibuprofen
therapy.78

Diuretics: Clinical studies as well as post-marketing observations have shown that NSAIDs can
reduce the effect of diuretics. This response has been attributed to inhibition of renal
prostaglandin synthesis. Concomitant therapy with potassium-sparing diuretics may be
associated with increased serum potassium, thus making it necessary to monitor levels. Patients
with impaired renal function who are taking potassium-sparing diuretics should not take
ibuprofen.

Glucocorticoids: Some studies have shown that the concomitant use of NSAIDs and oral
glucocorticoids increases the risk of GI adverse events such as ulceration and bleeding. This is
especially the case in older (> 65 years of age) individuals.

H₂ Antagonists: In studies with human volunteers, co-administration of cimetidine or ranitidine
with ibuprofen had no substantive effect on ibuprofen serum concentrations.

Lithium: Monitoring of plasma lithium concentrations is advised when stopping or starting a
NSAID, as increased lithium concentrations can occur.

Ibuprofen produced an elevation of plasma lithium levels and a reduction in renal lithium
clearance in a study of eleven normal volunteers. The mean minimum lithium concentration
increased 15% and the renal clearance of lithium was decreased by 19% during this period of
concomitant drug administration. This effect has been attributed to inhibition of renal
prostaglandin synthesis by ibuprofen. Thus, when ibuprofen and lithium are administered
concurrently, subjects should be observed carefully for signs of lithium toxicity.79

Methotrexate: Ibuprofen and other NSAIDs have been reported to reduce renal tubular
secretion of methotrexate in-vitro. This may enhance the toxicity of methotrexate. Caution
should be used when ibuprofen is administered concomitantly with methotrexate.80

Oral Hypoglycemics: Ibuprofen may increase hypoglycemic effects of oral antidiabetic agents
and insulin.

Selective Serotonin Reuptake Inhibitors (SSRIs): Concomitant administration of NSAIDs
and SSRIs may increase the risk of gastrointestinal ulceration and bleeding (see WARNINGS
AND PRECAUTIONS - Gastrointestinal).
Other Drugs: Although ibuprofen binds extensively to plasma proteins, interactions with other protein-bound drugs occur rarely. Nevertheless, caution should be observed when other drugs, also having a high affinity for protein binding sites, are used concurrently. Combined phenytoin and ibuprofen therapy may result in an increased risk of phenytoin toxicity (ataxia, hyperreflexia, nystagmus, tremor), especially in renally impaired patients. However, the mechanisms and clinical significance of these observations are presently not known. No interactions have been reported when ibuprofen has been used in conjunction with probenecid, thyroxine, steroids, antibiotics (except quinolones) or benzodiazepines.

Drug-Food Interactions

When ANALGESIC AND MUSCLE RELAXANT were taken with a high fat, high calorie meal, the rate and extent of absorption of methocarbamol was reduced by 36% and 20%, respectively, and the rate of absorption of ibuprofen was reduced by 22%. The product should preferably be taken on an empty stomach, but if stomach upset occurs, take with food or milk.

Drug-Herb Interactions

The interaction of ANALGESIC AND MUSCLE RELAXANT with herbal medications or supplements has not been studied.

Drug-Laboratory Interactions

Interactions with laboratory tests have not been established.

Drug-Lifestyle Interactions

Methocarbamol has potential to cause drowsiness and dizziness. The patient should be cautioned against the operation of motor vehicles or machinery. Since methocarbamol may possess a general CNS depressant effect, patients taking ANALGESIC AND MUSCLE RELAXANT should be cautioned about combined effects with alcohol.

The patient should be cautioned against excess alcohol intake and smoking when taking ANALGESIC AND MUSCLE RELAXANT as these are risk factors for cardiovascular disease and for gastrointestinal ulceration and bleeding.

DOSAGE AND ADMINISTRATION

Dosing Considerations

Elderly: Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) of ibuprofen. Use should be limited to the shortest possible duration of treatment in order to minimize the potential risk for an adverse event. If pain persists for more than 5 days consult a health care provider (see WARNINGS AND PRECAUTIONS – Special Populations - Geriatrics).
Hepatic Impairment: ANALGESIC AND MUSCLE RELAXANT is contraindicated in patients with severe hepatic impairment (see CONTRAINDICATIONS).

Renal Insufficiency: As with other NSAID-containing drugs, ANALGESIC AND MUSCLE RELAXANT should be used with great caution in patients with renal insufficiency (GFR < 60 mL/min or 1 mL/s). Administration of ibuprofen at 1 200 mg/day for one week has been observed to affect renal function in patients with mild renal insufficiency. Methocarbamol may also affect renal function if therapy lasts 5 days or more (see WARNINGS AND PRECAUTIONS – Renal, and ADVERSE REACTIONS – Renal). Use should be limited to a single caplet to be taken no more than three times a day, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) for ibuprofen. Use should be limited to the shortest possible duration of treatment to minimize the potential risk for an adverse event. If pain persists for more than 5 days, consult a health care provider. ANALGESIC AND MUSCLE RELAXANT is contraindicated in patients with severe renal impairment (creatinine clearance < 30 mL/min or 0.5 mL/sec) (see CONTRAINDICATIONS).

Recommended Dose and Dosage Adjustment

Adults and Children over 12 years of age: Unless recommended by a physician, do not take more than one (1) caplet every 4-6 hours or more than three (3) caplets in 24 hours, as this provides the highest permitted nonprescription single dose (400 mg) and daily dose (1 200 mg) for ibuprofen.

ANALGESIC AND MUSCLE RELAXANT should preferably be taken on an empty stomach, but if stomach upset occurs, take with food or milk.

Use should be limited to the shortest possible duration of treatment. If the condition persists for more than five days, the patient should consult a health care provider.

Missed Dose

Patients who miss one or more doses of ANALGESIC AND MUSCLE RELAXANT should not increase the dose of ANALGESIC AND MUSCLE RELAXANT to compensate for the missed dose or doses, but should resume to their normal dosing and schedule without exceeding the maximum allowed for 24 hours.

OVERDOSAGE

For management of a suspected drug overdose, contact your regional Poison Control Center immediately.
Symptoms

Methocarbamol overdose toxicity or death has not been reported. One adult survived the deliberate ingestion of 22-30 g of methocarbamol without serious toxicity. Another survived 30-50 g. The principal symptom was drowsiness in both cases. However, 3 deaths have been reported when methocarbamol was combined with alcohol and other drugs.

The toxicity of ibuprofen overdose is dependent upon the amount of drug ingested and the time elapsed since ingestion; individual responses may vary, thus making it necessary to evaluate each case separately. Although uncommon, serious toxicity and death have been reported with ibuprofen overdosage. The most frequently reported symptoms of ibuprofen overdose include abdominal pain, nausea, vomiting, lethargy and drowsiness. Other CNS symptoms include headache, tinnitus, CNS depression and seizures. Metabolic acidosis, coma, acute renal failure and apnoea (primarily in very young pediatric patients) may rarely occur. Cardiovascular toxicity, including hypotension, bradycardia, tachycardia and atrial fibrillation, have also been reported.

Therapeutic Measures

Methocarbamol overdose treatment: Within 1/2 to 1 hour of ingestion, gastric lavage and/or emesis may reduce absorption. Supportive measures include maintenance of an adequate airway, monitoring urinary output and vital signs and the administration of i.v. fluids, if necessary. There is no experience with forced diuresis or with dialysis in the treatment of methocarbamol overdose. Likewise, the usefulness of hemodialysis in managing methocarbamol overdose is unknown.

In cases of acute overdose, the stomach should be emptied through induction of emesis (in alert patients only) or gastric lavage. Emesis is most effective if initiated within 30 minutes of ingestion. Orally administered activated charcoal may help in reducing the absorption of ibuprofen when given less than 2 hours following ingestion. There is some evidence that repeated administration of activated charcoal may bind the medication that has diffused from the circulation.81 Inducing diuresis may be helpful. The treatment of acute overdose is primarily supportive. Management of hypotension, acidosis and gastrointestinal bleeding may be necessary.

In pediatric patients, the estimated amount of ibuprofen ingested per body weight may be helpful to predict the potential for development of toxicity although each case must be evaluated. Ingestion of less than 100 mg/kg is unlikely to produce toxicity. Pediatric patients ingesting 100 to 200 mg/kg may be managed with induced emesis and a minimal observation time of at least 4 hours. Pediatric patients ingesting 200 to 400 mg/kg of ibuprofen should have immediate gastric emptying and at least 4 hours observation. Pediatric patients ingesting greater than 400 mg/kg require immediate medical referral, careful observation and appropriate supportive therapy. Induced emesis is not recommended in overdoses greater than 400 mg/kg because of the risk for convulsions and the potential for aspiration of gastric contents.
In adult patients, the dose reportedly ingested does not appear to be predictive of toxicity. The need for referral and follow-up must be judged by the circumstances at the time of the overdose ingestion. Symptomatic adults should be carefully evaluated, observed and supported.
ACTION AND CLINICAL PHARMACOLOGY

Methocarbamol

Mechanism of Action

The precise mechanism of action is not known. Methocarbamol is thought to act on the central nervous system, perhaps depressing polysynaptic reflexes.

Pharmacodynamics

Methocarbamol is effective in reducing muscle spasms and pain in acute musculoskeletal disorders secondary to trauma and inflammation. Each drug of the combination of methocarbamol and aspirin contributed to the therapeutic effects against acute painful skeletal muscle problems of spasm, pain and tenderness.

Pharmacokinetics

Absorption: Orally administered methocarbamol is well absorbed from the gastrointestinal tract. Animal studies indicate that absorption occurs in the small intestine. In a comparative bioavailability study, following oral administration peak plasma concentration was reached in approximately 45 minutes when methocarbamol was administered in combination with ibuprofen. The plasma half-life of methocarbamol administered alone was 1.25 ± 0.27 hours and 1.30 ± 0.29 hours when administered in combination.

Distribution: The distribution of methocarbamol in normal and pregnant dogs was investigated by Campbell et al. Administration of unlabelled or 14C-methocarbamol into a tied-off loop of the jejunum to anesthetized dogs demonstrated that the radioactivity related to methocarbamol was easily absorbed from the intestine and widely distributed in all body tissues (highest concentrations in the liver and kidneys) and fluids (including crossing the blood-brain barrier). Radioactivity related to methocarbamol also crossed the placenta into the fetus in the dog.

Methocarbamol is 46 to 50% protein bound.

Metabolism: Methocarbamol has been shown to be metabolized in humans by dealkylation, hydroxylation and conjugation with glucuronic acid and sulfate, presumably in the liver. Two metabolites identified are:

- 3-(2-hydroxyphenoxy),1,2-propanediol-1-carbamate
- 3-(4-hydroxy-2-methoxyphenoxy)-1,2-propanediol-1-carbamate

Excretion: Studies in humans dosed with radio-labelled (C14) methocarbamol indicated that 97-99% of the administered radioactivity was recovered in the urine over 3 days. In a dose proportionality study of single doses of 500 mg, 1 500 mg and 3 000 mg, it was shown that kinetics of methocarbamol are not linear. However, rates of elimination suggest that no accumulation is expected with chronic dosing every 6 hours.

Extremely small amounts of unchanged methocarbamol have also been recovered in the feces.
Special Populations and Conditions

Cirrhosis: Some accumulation of methocarbamol at the usual dosage levels can be expected among patients with cirrhosis of the liver. At the 6-hour point, plasma levels of methocarbamol in cirrhotics were about six times the normal.

Renal Insufficiency: No alteration of methocarbamol metabolism was found in 6 patients with chronic renal failure and in a group of young-elderly.

Ibuprofen

Mechanism of Action

Ibuprofen, like all non-steroidal anti-inflammatory drugs, is an analgesic, antipyretic, and anti-inflammatory medication. There is strong evidence to support the view that the main mechanism of action of ibuprofen (like other NSAIDs) is related to decreasing prostaglandin biosynthesis.

Prostaglandins are naturally-occurring fatty acid derivatives that are widely distributed in the tissues. They are believed to be a common factor in the production of pain, fever, and inflammation. Prostaglandins are believed to sensitise tissues to pain- and inflammation-producing mediators such as histamine, 5-hydroxytryptamine, and kinins. The enzyme catalysing the committed step in prostaglandin biosynthesis is prostaglandin endoperoxide synthase, also know as cyclooxygenase. There is significant evidence that the main mechanism of analgesic/antipyretic action of NSAIDs is prostaglandin biosynthesis inhibition. Other pharmacologic effects such as lysosome and plasma membrane stabilisation have been observed, but the potential relevance of these effects to ibuprofen-induced analgesia and antipyresis is unclear.

Pharmacodynamics

Consistent with the NSAID classification, ibuprofen exhibits anti-inflammatory activity at higher dosage ranges. At lower adult single doses relevant to a nonprescription dosage (200 mg to 400 mg) ibuprofen relieves pain of mild to moderate intensity and reduces fever. Analogous to acetylsalicylic acid, the prototype of this class, this analgesic/antipyretic activity of ibuprofen occurs at lower doses than necessary for anti-inflammatory effects, which are thought to require sustained administration of higher individual doses.

Clinical studies indicate a duration of clinical effect for up to 8 hours for fever and up to 6 hours for pain.

Pharmacokinetics

Absorption: Ibuprofen is rapidly and almost completely absorbed. Peak serum concentration occurs within 1-2 hours in adults. In a comparative bioavailability study, following oral administration peak plasma concentration was reached in approximately 1.6 hours for ibuprofen alone and in approximately 1.3 hours when ibuprofen was administered in combination with methocarbamol. The plasma half-life of ibuprofen administered alone was 2.11 ± 0.43 hours, and 2.08 ± 0.37 hours when administered in combination. Food decreases the rate but not the
extent of absorption.

Distribution: The volume of distribution of ibuprofen in adults after oral administration is 0.1-0.2 L/kg. In humans, drug concentrations have been found in the synovial fluid of inflamed tissue approximately 5-12 hours after oral administration. In children (mean age 11 years), synovial fluid peak levels were reached within 5-6 hours of oral administration.

At therapeutic concentrations ibuprofen is highly bound to whole human plasma and to site II of purified albumin. There is no appreciable plasma accumulation of ibuprofen or its metabolites with repeated doses.

Metabolism: Ibuprofen is a racemic mixture of R(-) ibuprofen and S(+) ibuprofen. R(-) ibuprofen undergoes extensive enantiomeric conversion to S(+) ibuprofen in humans, averaging between 53% and 65%. S(+) ibuprofen is believed to be the pharmacologically more active enantiomer. Two major metabolites, 2-[4-(2-carboxypropyl)phenyl]propionic acid and 2-[4-(2-hydroxy-2-methylpropyl]propionic acid, have been identified in plasma and urine. The metabolites 1-hydroxyibuprofen and 3-hydroxyibuprofen have also been found in urine in very small concentrations. Cytochrome P450 (CYP) 2C9 has been identified as the most important catalyst for formation of all oxidative metabolites of R(-) and S(+) ibuprofen. Approximately 80% of a dose is recovered in urine, primarily as carboxymetabolites and conjugated hydroxymetabolites. Ibuprofen does not appear to induce the formation of drug metabolising enzymes in the rat.

Excretion: Ibuprofen’s plasma half-life in adults is 1.5-2.0 hours. Parent drug and metabolites are primarily excreted in the urine; bile and faeces are relatively minor elimination routes. Total recovery in urine is between 70% and 90% of the administered dose within 24 hours.

Special Populations and Conditions

Geriatrics: There is no evidence of a differential metabolism or elimination of ibuprofen in the elderly. A pharmacokinetic evaluation of ibuprofen in geriatric subjects (65 to 78 years) compared with young adult subjects (22 to 35 years) found that there was no clinically significant difference in the kinetic profiles of ibuprofen for these age groups. Furthermore, there was no statistically significant difference between the two populations in the urinary excretion pattern of the drug and its major metabolites.

Pediatrics: The pharmacokinetics of ibuprofen have also been evaluated in children, in whom the metabolism has been shown to be similar to that reported for adults. Wilson reported that for ibuprofen 10 mg/kg given to children under 12 years of age, peak plasma concentration occurred at 1.5 hours and then declined with a plasma half-life of 1.8 hours. Thus, ibuprofen appears to exhibit a similar pharmacokinetic profile in all age groups examined.
STORAGE AND STABILITY
Store between 15°C and 30°C.

DOSAGE FORMS, COMPOSITION AND PACKAGING

ANALGESIC AND MUSCLE RELAXANT (methocarbamol 500 mg and ibuprofen 400 mg): Capsule-shaped, coated, bilayer tablet, debossed with "P" on one side (white) and "E" and "S" separated by a score on the other side (greyish-blue). Supplied in bottles of 50 caplets and in blister packages of 18 caplets.

Composition: The inactive ingredients in ANALGESIC AND MUSCLE RELAXANT include: colloidal silicon dioxide, croscarmellose sodium, FD&C blue No. 2, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, povidone, pregelatinized starch, iron oxide red, sodium lauryl sulfate, and sodium starch glycolate.
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substances

Methocarbamol

Proper name: Methocarbamol

Chemical name: 1,2-propanediol, 3-(2-methoxyphenoxy)-,1-carbamate, (±)-

Molecular formula and molecular mass: C\textsubscript{11}H\textsubscript{15}NO\textsubscript{5}; 241.25 g/mol

Structural formula:

![Methocarbamol structural formula](image)

Physicochemical properties:

Physical Characteristics: White powder or crystals

Solubility: Solubility in water at 20°C: 2.5 g/100 mL. Soluble in alcohol and propylene glycol.

pKa and pH values: 1% solution in water approximate pH 6-8

Melting Point: 92 - 94°C

Ibuprofen

Proper name: Ibuprofen

Chemical name: 2-(4-isobutylphenyl) propionic acid

Molecular formula and molecular mass: C\textsubscript{13}H\textsubscript{18}O\textsubscript{2}; 206.28 g/mol
Structural formula:

\[
\begin{array}{c}
\text{CH}_3\text{CHCH}_2\text{CH}_3\text{CHCOOH} \\
\text{CH}_3\text{CHCH}_2\text{CH}_3
\end{array}
\]

Physicochemical properties:

Physical characteristics
White or almost white powder or crystals with a characteristic odour

Solubilities:
Low solubility in water: soluble 1 in 1.5 of alcohol, 1 in 1 of chloroform, 1 in 2 of ether, and 1 in 1.5 of acetone. Ibuprofen is also soluble in an aqueous solution of alkali hydroxides and carbonates.

pKa and pH values:
pH : 4.6 - 6.0, in a solution of 1 in 20

Melting Point:
75 - 77°C

CLINICAL TRIALS

Comparative Bioavailability Studies

A comparative bioavailability study was performed using 35 healthy human male volunteers under fasting and fed conditions. The rate and extent of absorption of methocarbamol and ibuprofen were measured and compared following a single dose of ANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc.) administered under fasting and fed conditions and a single dose of Robaxin® (methocarbamol) 500 mg tablets (Wyeth Consumer Healthcare Inc.) co-administered with a single dose of Advil® Extra Strength (ibuprofen) 400 mg tablets (Wyeth Consumer Healthcare Inc.) under fasting conditions. The results are summarized as follows:
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST(^a)</th>
<th>REFERENCE(^b)</th>
<th>% Ratio of Geometric Means</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
</table>
| AUC\(_T\) (ng·h/mL) | 18 968
19 837 (31.0) | 18 836
19 686 (31.1) | 100.70 | 95.26 – 106.45 |
| AUC\(_I\) (ng·h/mL) | 19 512
20 421 (31.5) | 19 463
20 311 (30.7) | 100.25 | 95.03 – 105.75 |
| C\(_{max}\) (ng/mL) | 7 443
7 707 (25.5) | 7 101
7 391 (28.4) | 104.82 | 95.03 – 115.63 |
| T\(_{max}\)\(^c\) (h) | 0.83
(0.33 – 4.00) | 0.83
(0.33 – 5.00) | 100.00 | 95.03 – 105.75 |
| T\(_{1/2}\)\(^d\) (h) | 1.46 (18.5) | 1.46 (16.0) | 100.00 | 95.03 – 105.75 |

\(^a\) ANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc., Montréal, Québec, Canada).

\(^b\) Robaxin\(^\text{®}\) (methocarbamol) 500 mg tablets (Wyeth Consumer Healthcare Inc.) were purchased in Canada.

\(^c\) Expressed as median (range) only.

\(^d\) Expressed as arithmetic mean (CV%) only.
Methocarbamol
(1 x 500 mg methocarbamol/400 mg ibuprofen; fed vs. fasting)

From Measured Data

Geometric Mean
Arithmetic Mean (CV %)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST(^a)</th>
<th>REFERENCE(^b)</th>
<th>% Ratio of Geometric Means</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC(_T) (ng·h/mL)</td>
<td>14 982</td>
<td>18 968</td>
<td>78.98</td>
<td>74.72 – 83.50</td>
</tr>
<tr>
<td></td>
<td>15 955 (37.6)</td>
<td>19 837 (31.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC(_I) (ng·h/mL)</td>
<td>15 577</td>
<td>19 512</td>
<td>79.84</td>
<td>75.68 – 84.22</td>
</tr>
<tr>
<td></td>
<td>16 607 (38.6)</td>
<td>20 421 (31.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_{max}) (ng/mL)</td>
<td>4 670</td>
<td>7 443</td>
<td>62.74</td>
<td>56.88 – 69.21</td>
</tr>
<tr>
<td></td>
<td>4 969 (36.0)</td>
<td>7 707 (25.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T(_{max})(^c) (h)</td>
<td>1.50</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.67 – 5.00)</td>
<td>(0.33 – 4.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T(_{1/2})(^d) (h)</td>
<td>1.41 (20.0)</td>
<td>1.46 (18.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)ANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc., Montréal, Québec, Canada) administered under fed conditions.

\(^b\)ANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc., Montréal, Québec, Canada) administered under fasting conditions.

\(^c\)Expressed as median (range) only.

\(^d\)Expressed as arithmetic mean (CV%) only.
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST[^a]</th>
<th>REFERENCE[^b]</th>
<th>% Ratio of Geometric Means</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_T (mcg·h/mL)</td>
<td>132.362</td>
<td>130.157</td>
<td>101.69</td>
<td>99.25 – 104.20</td>
</tr>
<tr>
<td></td>
<td>133.855 (14.7)</td>
<td>131.546 (14.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC_I (mcg·h/mL)</td>
<td>139.656</td>
<td>137.095</td>
<td>101.87</td>
<td>99.07 – 104.74</td>
</tr>
<tr>
<td></td>
<td>141.578 (16.9)</td>
<td>138.871 (15.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max} (mcg/mL)</td>
<td>37.016</td>
<td>38.501</td>
<td>96.14</td>
<td>89.49 – 103.30</td>
</tr>
<tr>
<td></td>
<td>37.482 (16.0)</td>
<td>39.025 (16.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.67 – 4.00)</td>
<td>(0.67 – 5.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{\frac{1}{2}}$ (h)</td>
<td>2.17 (17.0)</td>
<td>2.18 (13.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^a]: ANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc., Montréal, Québec, Canada).
[^b]: Advil® Extra Strength (ibuprofen) 400 mg tablets (Wyeth Consumer Healthcare Inc.) were purchased in Canada.
[^c]: Expressed as median (range) only.
[^d]: Expressed as arithmetic mean (CV%) only.
Ibuprofen

(1 x 500 mg methocarbamol/400 mg ibuprofen; fed vs. fasting)

From Measured Data

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST<sup>a</sup></th>
<th>REFERENCE<sup>b</sup></th>
<th>% Ratio of Geometric Means</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>T</sub> (µg·h/mL)</td>
<td>117.076
 118.074 (13.5)</td>
<td>132.362
 133.855 (14.7)</td>
<td>88.45
 86.32 – 90.63</td>
<td></td>
</tr>
<tr>
<td>AUC<sub>I</sub> (µg·h/mL)</td>
<td>128.640
 130.451 (15.0)</td>
<td>139.656
 141.578 (16.9)</td>
<td>92.11
 89.55 – 94.75</td>
<td></td>
</tr>
<tr>
<td>C<sub>max</sub> (µg/mL)</td>
<td>28.527
 29.274 (23.9)</td>
<td>37.016
 37.482 (16.0)</td>
<td>77.07
 71.73 – 82.80</td>
<td></td>
</tr>
<tr>
<td>T<sub>max</sub><sup>c</sup> (h)</td>
<td>1.75
 (0.50 – 5.05)</td>
<td>1.25
 (0.67 – 4.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>½</sub><sup>d</sup> (h)</td>
<td>2.32 (24.6)</td>
<td>2.17 (17.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc., Montréal, Québec, Canada) administered under fed conditions.

^bANALGESIC AND MUSCLE RELAXANT (Methocarbamol and Ibuprofen caplets) 500 mg/400 mg caplets (Pharmascience Inc., Montréal, Québec, Canada) administered under fasting conditions.

^cExpressed as median (range) only.

^dExpressed as arithmetic mean (CV%) only.
DETAILED PHARMACOLOGY

Methocarbamol\(^{86,83,105}\)

Human pharmacokinetic studies show rapid peaking of blood levels at under two hours.

In a comparative bioavailability study, the 500 mg dose administered individually produced peak plasma level at about 1 hour and in about 45 minutes when administered in combination with ibuprofen. The \(C_{\text{max}}\) was 7 698 ng/mL for methocarbamol when administered alone relative to 8 686 ng/mL when administered in combination. In about 6 hours, the amount of methocarbamol level in plasma dropped to below 700 ng/mL for both individual and combination administrations.

Acute animal studies of methocarbamol levels in viscera have shown the highest concentrations in the liver and kidneys. Pharmacokinetic studies in dogs show that a single dose is cleared from the body in about three days. Animal studies have also shown that methocarbamol crosses the placental and blood-brain barriers.\(^{83}\)

In animal studies, the synergic prolongation of hexobarbital sleeping time by methocarbamol was suggestive of an action on supraspinal brain centres.\(^{106}\)

Ibuprofen

Animal

After single oral doses of 20 to 150 mg/kg of \(^{14}\)C labelled ibuprofen rats, the peak plasma level occurred at or before the earliest time examined (20 minutes in the 20 mg/kg group and 45 minutes in the 150 mg/kg group) and peak levels occurred with 45 minutes of dosing in nearly all tissues examined. The concentration in plasma and tissue decreased to very low levels by 6 hours after the 20 mg/kg dose and by 17 hours after the 150 mg/kg dose. Sixteen to 38% of the daily dose of ibuprofen was excreted in the urine.\(^{107}\)

A similar dose was given to dogs for periods of up to 6 months with no evidence of accumulation of the drug or its metabolites.\(^{107}\)

Inhibition of Platelet Aggregation in Animals

Like many other NSAIDs, ibuprofen inhibits platelet aggregation, as demonstrated by preventing platelet disposition in aortopulmonary arterial bypass grafts in the dog.\(^{108}\) The drug’s protective action against fatal pulmonary embolism in rabbits injected intravenously with arachidonic acid may also relate to platelet inhibition.\(^{109-110}\) Various prostaglandins and thromboxane A\(_2\) (TXA\(_2\)) are important factors in normal platelet aggregation.\(^{111}\) Cyclooxygenase inhibition reduces TXA\(_2\) production and release, thereby reducing platelet aggregation. Ibuprofen may also reduce platelet membrane fluidity, which reduces aggregation\(^{112}\), but it is not known to what extent TXA\(_2\) synthesis inhibition is involved in this effect.
Human

Two metabolites of ibuprofen were isolated from the urine of patients who had been treated for one month with the drug. The metabolites were identified at 2-4', (2-hydroxy-2-methylpropyl) phenylpropionic acid (metabolite A) and 2-4' (2-carboxpropyl) phenylpropionic acid (metabolite B). About 1/3 of the dose was excreted in the urine of patients as metabolite B, 1/10 as unchanged ibuprofen and 1/10 as metabolite A. The remainder of the dose could not be identified in the urine.107

Effect of Ibuprofen on Platelet Aggregation, Bleeding and Clotting Times in Normal Volunteers

Platelet aggregation studies using the method of Sekhar were performed. Platelet aggregation fell significantly at a dosage of 1 800 mg per day of ibuprofen when given over a period of 28 days.

Ibuprofen was also found to influence ADP induced aggregation to a lesser extent than that influenced by collagen. Platelet aggregation induced by recalcification of citrated platelet-rich plasma (a thrombin induced reaction) was not influenced by ibuprofen treatment. Likewise, ibuprofen did not affect whole blood clotting time on recalcification or prothrombin time. Bleeding time performed 2 hours after the administration of ibuprofen showed a significant dose related increase.

TOXICOLOGY

Methocarbamol

Acute Animal Toxicity: LD50 was determined in rats with oral combined drugs (methocarbamol 2.5 and ibuprofen 1 w/w) and individually administered methocarbamol and ibuprofen as follows:

<table>
<thead>
<tr>
<th></th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methocarbamol / Ibuprofen (2.5/1)</td>
<td>2 367.7</td>
</tr>
<tr>
<td>Methocarbamol</td>
<td>3 576.2</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>762.9</td>
</tr>
</tbody>
</table>

The LD50 of the combination was 2 367.7 mg/kg. It contained 676.5 mg of ibuprofen and 1 691.2 mg of methocarbamol. The ibuprofen component of the combination is close to the LD50 of ibuprofen of 762.9 mg/kg. This suggests that ibuprofen was solely responsible for the toxicity/mortality of the animals dosed with the mixture. The results also indicate that the mixture of ibuprofen and methocarbamol (1:2.5 w/w) does not affect the acute oral toxicity of either constituent drug in rats.
Subacute Toxicity: Oral administration to dogs of dosages of 200, 400, 600 and 1 000 mg/kg/day produced no gross signs of toxicity during the 30-day observation period. At 1 200 mg/kg/day, transitory tremor, loss of righting reflex and salivation were seen. Ataxia, which was slightly more persistent, was also observed.\(^{113}\)

Chronic Toxicity: Oral administration in rats of dosages up to 1 600 mg/kg/day for 13 weeks produced toxic effects only at the higher levels. At 1 600 mg/kg/day, there was sprawling of the hind limbs and waddling gait during the first 6-8 weeks of the study. Doses of 800 mg/kg/day and higher resulted in significant reduction in body weight.\(^{113}\) There were no histological changes.

Penetration into Animal Foetus: Various species showed evidence of transfer of methocarbamol to the foetus. However, several studies of various species showed no teratogenic potential for methocarbamol.\(^{113}\)

Ibuprofen

Single Dose Toxicity Studies: Single dose toxicity studies have been conducted using mice, rats, and dogs.\(^{107}\) The LD\(_{50}\) values for ibuprofen, expressed as mg/kg of body weight are as follows:

<table>
<thead>
<tr>
<th>Species</th>
<th>Route</th>
<th>LD(_{50}) Value (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Oral</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>Intraperitoneal</td>
<td>320</td>
</tr>
<tr>
<td>Rat</td>
<td>Oral</td>
<td>1 600</td>
</tr>
<tr>
<td></td>
<td>Subcutaneous</td>
<td>1 300</td>
</tr>
</tbody>
</table>

Acute signs of poisoning were prostration in mice, and sedation, prostration, loss of righting reflex and laboured respiration in rats. Death occurred within 3 days from perforated gastric ulcers in mice and intestinal ulceration in rats, irrespective of the route of administration.

Following single ibuprofen doses of 125 mg/kg and above to dogs effects were observed including emesis, transient albuminuria, faecal blood loss and erosions in the gastric antrum and pylorus; no ill effects were seen with 20 or 50 mg/kg doses.

Multiple Dose Studies: The no-effect level was determined using groups of 10 male and 10 female rats which were dosed orally for 26 weeks with 180, 60, 20 or 7.5 mg/kg ibuprofen in 0.4% hydroxyethyl cellulose. The control group consisted of 20 males and 20 females which received 0.4% hydroxyethyl cellulose. Rats were weighed three times daily and blood samples were obtained in the final week of dosing. The rats were sacrificed the day after the last dose and the internal organs examined.

Rats receiving ibuprofen for 26 weeks grew normally except for males on 180 mg/kg/day, which gained significantly less weight than the controls. One male rat receiving 180 mg/kg/day died due to intestinal lesions and the death was thought to be treatment-related. Both males and females receiving 180 mg/kg/day were anaemic; leukocyte count and plasma glutamic pyruvic
transaminase activities were not significantly altered. The organ to body weight ratio of males given 180 mg/kg/day was typically greater than normal. For some organs, this was because the males weighed less than the controls. Organs that were enlarged were the liver, kidney, and spleen. The same organs were also enlarged in females receiving 180 mg/kg/day, although these females were similar in body weight to the controls. In addition, the combined seminal vesicle and prostate weight was subnormal and uterine weight was increased. The thyroid gland of males receiving 180, 60, 20 mg/kg/day exhibited a slight increase in weight, which was the same for the three doses, however no such increase was observed in the females. There were no significant histological changes observed in rat tissues except for the presence of intestinal ulcers in 1 male and 3 females receiving 180 mg/kg/day.

The above experiment was adapted to establish whether the effects of ibuprofen treatment on rats were reversible when dosing ended. In this instance, rats were administered 180, 60, or 20 mg/kg/day ibuprofen for 13 weeks instead of 26 weeks, whereupon half the animals in each group were sacrificed and the remaining rats were maintained, undosed, for three weeks and then sacrificed. Haematological examinations were performed after 4, 8, and 12 weeks of treatment.

Results obtained from the dosing phase of this 13-week experiment reflected the results obtained previously, where rats were dosed for 26 weeks. Males receiving 180 mg/kg/day had enlarged kidneys, spleen, and testes; while those on lower doses had normal organ weights. Females on all three doses had enlarged kidneys, the extent of which was dose-dependent. Enlargement of the liver and ovaries was observed in females receiving 180 mg/kg/day, and of the spleen and ovaries on those on 60 mg/kg/day. None of the enlarged organs were histologically abnormal. Three weeks following withdrawal of treatment, the organ to body weight ratios had completely or almost completely returned to normal. Rats receiving 180 mg/kg/day were anaemic from week 4 of dosing and when examined after the final dose, were found to have intestinal lesions. These effects were not seen at the lower doses, thereby confirming the results of the first experiment. Since the highest dose of 180 mg/kg/day was only moderately toxic, an additional group of rats was dosed with 540 mg/kg/day. All these rats died or were killed in extremis after 4 days’ dosing. All had intestinal ulceration with peritonitis, and some also had slight renal tubular dilation.

The primary toxic effect of ibuprofen in rats is intestinal damage. Ibuprofen alters the organ to body weight ratio of certain organs, such as the liver, kidneys, gonads, and the secondary sex organs, although no histological abnormalities have occurred and the effect is reversible. The liver and kidney enlargement may be a reflection of work hypertrophy associated with the metabolism and excretion of the compound, whereas the significance of the effect on other organs is unknown. When administered in lethal doses, ibuprofen produces mild kidney lesions in addition to the intestinal damage.

Carcinogenic Potential: Thirty male and 30 female rats were given 180 mg/kg/day of ibuprofen orally for 55 weeks and 60 mg/kg/day for the next 60 weeks. The only specific pathological effect observed was intestinal ulceration. There was no evidence of tumour induction and it is concluded that ibuprofen is not carcinogenic in the rat.
Teratology Study in Rabbits: New Zealand white rabbits were given 0, 7.5, 20 and 60 mg/kg daily of ibuprofen from day 1 to day 29 of pregnancy. The mean foetal weight was unaffected; litter size was unaffected at the lower doses. Congenital malformations did occur in both treated and untreated groups with no consistent pattern except for one litter of 4 young with cyclopia. The results of this experiment indicate that ibuprofen is not teratogenic when given in toxic doses to rabbits.107

Teratology Study in Rats: Newly-mated female albino rats were given ibuprofen in doses of 0, 7.5, 20, 60 and 180 mg/kg/day from day 1 to day 20 of pregnancy; ibuprofen exhibited no embryotoxic or teratogenic effects even when administered at ulcerogenic doses.107

Penetration of Ibuprofen into the Rabbit and Rat Foetus: Rabbits and rats in late pregnancy were given single oral doses of 60 and 20 mg/kg respectively of C14 labelled ibuprofen. Rabbits were killed 3 hours after dosing and rats killed 1.5 hours after dosing when maternal and foetal blood was collected. Similar concentrations of radioactive ibuprofen were detected in both the mother and foetus indicating that the drug and its metabolites readily crossed the placental barrier into the foetal circulation.107
REFERENCES

56. Fommei E, Ghione S, Palla L et al. Inhibition of prostaglandins and angiotensin II: Effects

69. Wong DG, Spence JD, Lamki L et al. Effect of non-steroidal anti-inflammatory drugs on

77. Sheiner PA, Mor E, Chodoff L et al. Acute renal failure associated with the use of ibuprofen in two liver transplant recipients on FK506. Transplantation 1994; 57:1132-1133.

84. Brooks CD, Schlagel CA, Sekhar NC, Sobota JT. Tolerance and pharmacology of

PART III: CONSUMER INFORMATION
ANALGESIC AND MUSCLE RELAXANT
Methocarbamol and Ibuprofen caplets

This leaflet is part III of a three-part "Product Monograph" published when ANALGESIC AND MUSCLE RELAXANT was approved for sale in Canada and is designed specifically for Consumers. This leaflet is a summary and will not tell you everything about ANALGESIC AND MUSCLE RELAXANT. Contact your doctor or pharmacist if you have any questions about the drug.

ABOUT THIS MEDICATION

What the medication is used for:
ANALGESIC AND MUSCLE RELAXANT is used for effective relief of pain associated with muscle spasms, such as back pain, tense neck muscles, strains and sprains.

What it does:
ANALGESIC AND MUSCLE RELAXANT is a combination drug that contains methocarbamol and ibuprofen. Methocarbamol is a muscle relaxant and ibuprofen is an analgesic with fever and pain reducing properties.

When it should not be used:
DO NOT TAKE ANALGESIC AND MUSCLE RELAXANT if you have any of the following medical conditions:
• Heart bypass surgery (planning to have or recently had)
• Heart disease or irregular heart beats
• Bleeding in the brain or other bleeding disorders
• Current pregnancy (after 28 weeks of pregnancy)
• Allergy to methocarbamol, ibuprofen, ASA (Acetylsalicylic Acid) or other NSAIDs (Non-Steroidal Anti-Inflammatory Drugs), or allergy to any of the non-medicinal ingredients in ANALGESIC AND MUSCLE RELAXANT (see the heading “What the non-medicinal ingredients are”)• Stomach distress, stomach or gastric ulcers
• Bleeding from the stomach or gut
• Inflammatory bowel disease (Crohn’s Disease or Ulcerative Colitis)
• Liver disease
• Kidney disease
• High potassium in the blood

Patients who took a drug in the same class as ANALGESIC AND MUSCLE RELAXANT after a type of heart surgery (coronary artery bypass grafting (CABG)) were more likely to have heart attacks, strokes, blood clots in the leg(s) or lung(s), and infections or other complications than those who did NOT take that drug.

ANALGESIC AND MUSCLE RELAXANT should NOT be used in children 12 years of age or under since the safety and effectiveness have NOT been established.

What the medicinal ingredients are:
Methocarbamol
Ibuprofen

What the non-medicinal ingredients are:
Colloidal silicon dioxide, croscarmellose sodium, FD&C Blue No. 2, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, povidone, pregelatinized starch, iron oxide red, sodium lauryl sulfate, and sodium starch glycolate.

What dosage forms it comes in:
Each caplet contains 500 mg of methocarbamol and 400 mg of ibuprofen.

WARNINGS AND PRECAUTIONS

If you have, or previously had, any of the following medical conditions, see your health care provider to discuss treatment options other than ANALGESIC AND MUSCLE RELAXANT:
• Heart Attack or Angina
• Stroke or Mini-stroke
• Loss of Vision
• Current Pregnancy (less than 28 weeks)
• Congestive Heart Failure

Before taking this medication, tell your health care provider if you have any of the following:
• High blood pressure
• High cholesterol
• Diabetes mellitus or on a low sugar diet
• Atherosclerosis
• Poor circulation to your extremities
• A current or past habit of smoking
• Kidney disease or urine problems
• Previous ulcer or bleeding from the stomach or gut
• Previous bleeding in the brain
• Bleeding problems
• Family history of allergy to NSAIDs, such as acetylsalicylic acid (ASA), celecoxib, diclofenac, diflunisal, etodolac, fenoprofen, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, rofecoxib, sulindac, tenoxicam, tiaprofenic acid, tolmetin, or valdecoxib (this is NOT a complete list)
• Family history of asthma, nasal polyps, long-term swelling of the sinus (chronic sinusitis) or hives
• Any other medical problem

Before taking this medication, tell your health care provider if you are planning to get pregnant, if you are currently breastfeeding, or if you are planning to breastfeed.
While taking this medication:

- Tell any other doctor, dentist, pharmacist or other health care professional that you see, that you are taking this medication, especially if you are planning to have heart surgery;
- Do NOT drink alcoholic beverages while taking this medication because you would be more likely to develop stomach problems;
- Fertility may be decreased. The use of ANALGESIC AND MUSCLE RELAXANT is not recommended in women trying to get pregnant. In women who have difficulty conceiving, stopping treatment with ANALGESIC AND MUSCLE RELAXANT should be considered;
- Exercise caution when operating machinery or motor vehicles as ANALGESIC AND MUSCLE RELAXANT may cause drowsiness or dizziness. Avoid consuming alcohol.

INTERACTIONS WITH THIS MEDICATION

Talk to your health care provider and pharmacist if you are taking any other medication (prescription or nonprescription) such as any of the following (this is NOT a complete list):

- Acetylsalicylic Acid (ASA) or other NSAIDs e.g., ASA, celecoxib, diclofenac, ibuprofen, indomethacin, ketorolac, meloxicam, naproxen
- Antacids
- Antidepressants
- Blood pressure medications
 - ACE (angiotensin converting enzyme) inhibitors e.g., enalapril, lisinopril, perindopril, ramipril
 - ARBs (angiotensin II receptor blockers) e.g., candesartan, irbesartan, losartan, valsartan
- Blood thinners e.g., warfarin, ASA, clopidogrel
- Corticosteroids (including glucocorticoids) e.g., prednisone
- Cyclosporin or Tacrolimus
- Digoxin
- Diuretics e.g., furosemide, hydrochlorothiazide
- Lithium
- Methotrexate
- Oral hypoglycemics (diabetes medications)
- Selective Serotonin Reuptake Inhibitors (SSRIs) e.g., citalopram, fluoxetine, paroxetine, sertraline

Your health care provider may prescribe low dose ASA (acetylsalicylic acid) as a blood thinner to reduce your risk of having a heart attack or stroke while you are taking ANALGESIC AND MUSCLE RELAXANT. Take only the amount of ASA prescribed by your health care provider. You are more likely to upset or damage your stomach if you take both ANALGESIC AND MUSCLE RELAXANT and ASA than if you took ANALGESIC AND MUSCLE RELAXANT alone.

PROPER USE OF THIS MEDICATION

Usual dose:

<table>
<thead>
<tr>
<th>Medical Condition</th>
<th>Usual Dose</th>
<th>Maximum Dose</th>
<th>Maximum Duration of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain associated with muscle spasms (for adults and adolescents over 12 years of age)</td>
<td>1 caplet every 4 to 6 hours</td>
<td>3 caplets per 24 hours</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

Preferably, take on an empty stomach, but if stomach upset occurs, take with food or milk.

Take ANALGESIC AND MUSCLE RELAXANT only as directed by your health care provider. Do NOT take more of it, do NOT take it more often and do NOT take it for a longer period of time than recommended by your health care provider. Use should be limited to the shortest possible duration of treatment. Taking too much of ANALGESIC AND MUSCLE RELAXANT may increase your chances of unwanted and sometimes dangerous side effects, especially if you are elderly, have other diseases or take other medications.

If your condition persists for more than five days, consult a health care provider to discuss whether ANALGESIC AND MUSCLE RELAXANT is working for you and if it is causing you any unwanted effects.

This medication is for you. Do NOT give it to anyone else. It may harm them, even if their symptoms seem to be similar to yours.

ANALGESIC AND MUSCLE RELAXANT should NOT be used in children 12 years of age and under since safety and effectiveness have NOT been established.

Missed Dose:

If you miss a dose of ANALGESIC AND MUSCLE RELAXANT, you should not increase the dose of ANALGESIC AND MUSCLE RELAXANT to make up for the missed dose, but you should continue taking your caplet without exceeding the maximum allowed for 24 hours.

Overdose:

In case of drug overdose, contact a health care practitioner, hospital emergency department or regional Poison Control Centre immediately, even if there are no symptoms.

SIDE EFFECTS AND WHAT TO DO ABOUT THEM

ANALGESIC AND MUSCLE RELAXANT may cause some side effects, especially when used for a long time or in large doses. When these side effects occur, you may require medical
attention. Report all symptoms or side effects to your health care provider. ANALGESIC AND MUSCLE RELAXANT may cause you to become drowsy or tired. Be careful when driving or participating in activities that require you to be alert. If you become drowsy, dizzy or light-headed after taking ANALGESIC AND MUSCLE RELAXANT, do NOT drive or operate machinery.

Check with your health care provider IMMEDIATELY if you develop chills, fever, muscle aches or pains, or other flu-like symptoms, especially if they occur before or together with a skin rash. These symptoms may be the first signs of a SERIOUS ALLERGIC REACTION to this medication.

SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom</th>
<th>STOP taking ANALGESIC AND MUSCLE RELAXANT and get emergency medical attention IMMEDIATELY</th>
<th>Stop taking ANALGESIC AND MUSCLE RELAXANT and seek immediate emergency medical attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloody or black tarry stools</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Shortness of breath, wheezing, any trouble breathing or chest tightness</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Skin rash, hives, swelling or itching</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Blurred vision, or any visual disturbance</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Any change in the amount or colour of your urine (red or brown)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Any pain or difficulty experienced while urinating</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Swelling of the feet, lower legs; weight gain</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Vomiting or persistent indigestion, nausea, stomach pain or diarrhea</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Yellow discolouration of the skin or eyes, with or without itchy skin</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Malaise, fatigue, loss of appetite</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Headaches, stiff neck</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Mental confusion, depression</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dizziness, lightheadedness</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hearing problems</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

This is NOT a complete list of side effects. If you have any unexpected side effects while taking ANALGESIC AND MUSCLE RELAXANT, see your healthcare provider.

HOW TO STORE IT

CAUTION: This package contains enough medicine to seriously harm a child. Keep out of reach of children.

Store between 15°and 30°C. Do NOT keep expired medicine or medicine that is no longer needed. Any expired or unused medicine should be returned to your pharmacist.

REPORTING SUSPECTED SIDE EFFECTS

You can report any suspected adverse reactions associated with the use of health products to the Canada Vigilance Program by one of the following 3 ways:

- Report online at www.healthcanada.gc.ca/medeffect
- Call toll-free at 1-866-234-2345
- Complete a Canada Vigilance Reporting Form and:
 - Fax toll-free to 1-866-678-6789, or
 - Mail to:
 - Canada Vigilance Program
 - Health Canada
 - Postal Locator 0701E
 - Ottawa, Ontario
 - K1A 0K9

Postage paid labels, Canada Vigilance Reporting Form and the adverse reaction reporting guidelines are available on the MedEffect™ Canada Web site at www.healthcanada.gc.ca/medeffect.

NOTE: Should you require information related to the management of side effects, contact your health professional. The Canada Vigilance Program does not provide medical advice.

MORE INFORMATION

This document plus the full product monograph, prepared for health professionals can be found by contacting the sponsor, Pharmascience Inc. at: 1-888-550-6060

This leaflet was prepared by Pharmascience Inc. Last revised: December 31, 2012