PRODUCT MONOGRAPH

PrMylan-Escitalopram

Escitalopram Oxalate Tablets

10 mg and 20 mg as escitalopram

Antidepressant/Antiobsessional

Mylan Pharmaceuticals ULC
85 Advance Road
Etobicoke, ON
M8Z 2S6

Submission Control No. 197329

Date of Revision: August 16, 2016
Table of Contents

PART I: HEALTH PROFESSIONAL INFORMATION .. 3
INDICATIONS AND CLINICAL USE ... 3
CONTRAINDICATIONS ... 4
WARNINGS AND PRECAUTIONS .. 5
ADVERSE REACTIONS ... 12
DRUG INTERACTIONS ... 27
DOSAGE AND ADMINISTRATION ... 34
OVERDOSAGE ... 36
ACTION AND CLINICAL PHARMACOLOGY .. 37
STORAGE AND STABILITY .. 39
DOSAGE FORMS, COMPOSITION AND PACKAGING ... 39

PART II: SCIENTIFIC INFORMATION ... 40
PHARMACEUTICAL INFORMATION ... 40
CLINICAL TRIALS .. 41
DETAILED PHARMACOLOGY .. 43
TOXICOLOGY .. 49
REFERENCES .. 54

PART III: CONSUMER INFORMATION ... 57
Mylan-Escitalopram

Escitalopram Oxalate Tablets

10 mg and 20 mg as escitalopram

PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form / Strength</th>
<th>Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>10 mg and 20 mg tablets</td>
<td>Colloidal silicon dioxide, croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, purified talc, titanium dioxide.</td>
</tr>
</tbody>
</table>

INDICATIONS AND CLINICAL USE

Adults:

- Mylan-Escitalopram (escitalopram oxalate) is indicated for the symptomatic relief of Major Depressive Disorder (MDD).

- The efficacy of escitalopram oxalate in maintaining an antidepressant response, in patients with major depressive disorder who responded during an 8-week, acute-treatment phase while taking escitalopram oxalate and were then observed for relapse during a period of up to 36 weeks, was demonstrated in a placebo-controlled trial (see CLINICAL TRIALS).

- Mylan-Escitalopram is indicated for the symptomatic relief of obsessive-compulsive disorder (OCD). The obsessions and compulsions must be experienced as intrusive, markedly distressing, time consuming or interfering significantly with the person’s social or occupational functioning.
The efficacy of escitalopram oxalate in maintaining an anti-obsessive response for up to 6 months, in patients with obsessive-compulsive disorder, was demonstrated in a longterm placebo-controlled trial in patients who initially responded to 16 weeks of escitalopram oxalate open-label treatment (see CLINICAL TRIALS).

Physicians who elect to use Mylan-Escitalopram for extended periods should periodically re-evaluate the usefulness of the drug for individual patients.

Geriatrics (≥65 years of age):
Elderly patients should be administered lower doses and a lower maximum dose (see DOSAGE AND ADMINISTRATION, Geriatrics and WARNINGS AND PRECAUTIONS, Special Populations, Geriatrics).

Pediatrics (<18 years of age):
Mylan-Escitalopram is not indicated for use in patients below the age of 18 (see WARNINGS AND PRECAUTIONS, General, Potential Association with Behavioural and Emotional Changes, Including Self-Harm).

CONTRAINDICATIONS
- Mylan-Escitalopram is contraindicated in patients with known hypersensitivity to escitalopram or any of the excipients of the drug product. For a complete listing, see the Dosage Forms, Composition and Packaging section of the product monograph.
- Mylan-Escitalopram is contraindicated in patients with known QT interval prolongation or congenital long QT syndrome. (See also WARNINGS AND PRECAUTIONS, ADVERSE REACTIONS/POST-MARKET ADVERSE DRUG REACTIONS/Cardiac Disorders, Drug Interactions/QT Interval Prolongation).
- **MONOAmine OXIDASE INHIBITORS**

Cases of serious reactions have been reported in patients receiving selective serotonin reuptake inhibitors (SSRIs) in combination with a monoamine oxidase inhibitor (MAOI) or the reversible MAOI (RIMA), moclobemide, and in patients who have recently discontinued an SSRI and have been started on a MAOI (see DRUG INTERACTIONS). With the coadministration of an SSRI with MAOI, there have been reports of serious, sometimes fatal reactions including hyperthermia, rigidity, myoclonus, autonomic instability with possible fluctuations of vital signs, and mental status changes, including extreme agitation progressing to delirium and coma. Some cases presented with features resembling serotonin syndrome.
Therefore, Mylan-escitalopram should not be used in combination with a MAOI or within 14 days of discontinuing treatment with a MAOI (including linezolid, an antibiotic which is a reversible non-selective MAO inhibitor, and methylene blue, which is a MAOI). Similarly, at least 14 days should elapse after discontinuing Mylan-Escitalopram treatment before starting a MAOI.

- **PIMOZIDE**
 Escitalopram oxalate should not be used in combination with the antipsychotic drug pimozide, as results from a controlled study with racemic citalopram indicate that concomitant use is associated with an increased risk of QTc prolongation compared to pimozide alone. This apparent pharmacodynamic interaction occurred in the absence of a clinically significant pharmacokinetic interaction; the mechanism is unknown (see **DRUG INTERACTIONS**).

WARNINGS AND PRECAUTIONS

GENERAL

POTENTIAL ASSOCIATION WITH BEHAVIOURAL AND EMOTIONAL CHANGES, INCLUDING SELF-HARM

Pediatrics: Placebo-Controlled Clinical Trial Data

- Recent analyses of placebo-controlled clinical trial safety databases from SSRIs and other newer antidepressants suggest that use of these drugs in patients under the age of 18 may be associated with behavioural and emotional changes, including an increased risk of suicidal ideation and behaviour over that of placebo.

- The small denominators in the clinical trial database, as well as the variability in placebo rates, preclude reliable conclusions on the relative safety profiles among these drugs.

Adults and Pediatrics: Additional data

- There are clinical trials and post-marketing reports with SSRIs and other newer antidepressants, in both pediatrics and adults, of severe agitation-type adverse events coupled with self-harm and harm to others. The agitation-type events include:
 - akathisia, agitation, emotional lability, hostility, aggression, depersonalization. In some cases, the events occurred within several weeks of starting treatment.

Rigorous clinical monitoring for suicidal ideation or other indicators of potential for suicidal behaviour is advised in patients of all ages. This includes monitoring for agitation-type emotional and behavioural changes.

An FDA meta-analysis of placebo-controlled clinical trials of antidepressant drugs in adult patients aged 18 to 24 years with psychiatric disorders showed an increased risk of suicidal behaviours with antidepressants compared to placebo.
Discontinuation Symptoms
Patients currently taking Mylan-Escitalopram should NOT be discontinued abruptly, due to risk of discontinuation symptoms. At the time that a medical decision is made to discontinue an SSRI or other newer antidepressant drug, a gradual reduction in the dose rather than an abrupt cessation is recommended.

DISCONTINUATION OF TREATMENT WITH MYLAN-ESCITALOPRAM
When discontinuing treatment, patients should be monitored for symptoms that may be associated with discontinuation (e.g. dizziness, abnormal dreams, sensory disturbances [including paraesthesias and electric shock sensations], agitation, anxiety, emotional indifference, impaired concentration, headache, migraine, tremor, nausea, vomiting and sweating) or other symptoms that may be of clinical significance (see ADVERSE REACTIONS). A gradual reduction in the dosage over several weeks, rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, dose titration should be managed on the basis of the patient’s clinical response (see ADVERSE REACTIONS and DOSAGE AND ADMINISTRATION).

ESCITALOPRAM OXALATE TREATMENT DURING PREGNANCY- EFFECTS ON NEWBORNS
In animal reproduction studies, escitalopram has been shown to have adverse effects on embryo/fetal and postnatal development, when administered at doses greater than human therapeutic doses. (see TOXICOLOGY, Reproduction Toxicity). There are no adequate and well-controlled studies in pregnant women; therefore, Mylan-Escitalopram should be used during pregnancy only if the potential benefit to the patient justifies the potential risk to the fetus.

Post-marketing reports indicate that some neonates exposed to SSRIs such as escitalopram oxalate and other antidepressants late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. When treating a pregnant woman with Mylan-Escitalopram during the third trimester, the physician should carefully consider the potential risks and benefits of treatment (see WARNINGS AND PRECAUTIONS, Special Populations, Pregnant and Nursing Women; and DOSAGE AND ADMINISTRATION).

INTERFERENCE WITH COGNITIVE AND MOTOR PERFORMANCE
In a study with healthy volunteers, racemic citalopram did not impair cognitive function or psychomotor performance. However, psychotropic medications may impair judgement, thinking or motor skills. Consequently, patients should be cautioned against driving a car or operating hazardous machinery until they are reasonably certain that Mylan-Escitalopram does not affect them adversely.

Bone Fracture Risk:
Epidemiological studies show an increased risk of bone fractures following exposure to some antidepressants, including SSRIs/SNRIs. The risks appear to be greater at the initial stages of treatment, but significant increased risks were also observed at later stages of treatment. The possibility of fracture should be considered in the care of patients treated with escitalopram oxalate. Elderly patients and patients with important risk factors for bone fractures should be
advised of possible adverse events which increase the risk of falls, such as dizziness and orthostatic hypotension, especially at the early stages of treatment but also soon after withdrawal. Preliminary data from observational studies show association of SSRIs/SNRIs and low bone mineral density in older men and women. Until further information becomes available, a possible effect on bone mineral density with long term treatment with SSRIs/SNRIs, including escitalopram oxalate, cannot be excluded, and may be a potential concern for patients with osteoporosis or major risk factors for bone fractures.

The following additional PRECAUTIONS are listed alphabetically.

CARCINOGENESIS AND MUTAGENESIS
For animal data, see Part II: TOXICOLOGY section.

CARDIOVASCULAR

PATIENTS WITH CARDIAC DISEASE
Neither escitalopram oxalate nor racemic citalopram has been systematically evaluated in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were generally excluded from clinical trials during the drug’s premarketing assessment. In line with other SSRIs, including racemic citalopram, escitalopram oxalate causes statistically significant, but clinically unimportant decrease in heart rate. In patients < 60 years old, the mean decrease with escitalopram oxalate was approximately 2.3 bpm, while in patients ≥ 60 years old, the mean decrease was approximately 0.6 bpm (see ADVERSE REACTIONS, ECG). Consequently, caution should be observed when Mylan-Escitalopram is initiated in patients with pre-existing slow heart rate.

QT Interval prolongation
Escitalopram has been found to cause a dose-dependent prolongation of the QT interval. (See also sections Contraindications, Adverse Reactions/Post-Market Adverse Reactions, Cardiac Disorders, Drug Interactions/QT Interval Prolongation)

ENDOCRINE AND METABOLISM

DIABETIC PATIENTS
Neither escitalopram oxalate nor racemic citalopram has been systematically evaluated in diabetic patients; in the case of racemic citalopram, diabetes constituted an exclusion criterion. Rare events of hypoglycaemia were reported for racemic citalopram. Treatment with an SSRI in patients with diabetes may alter glycaemic control (hypoglycaemia and hyperglycaemia). Mylan-Escitalopram should be used with caution in diabetic patients on insulin or oral hypoglycaemic drugs.

HEMATOLOGIC

ABNORMAL BLEEDING
SSRIs and SNRIs, including escitalopram oxalate, may increase the risk of bleeding events by causing abnormal platelet aggregation. Concomitant use of acetylsalicylic acid (ASA), nonsteroidal anti-inflammatory drugs (NSAIDs), warfarin, and other anticoagulants may add to
the risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding events related to SSRIs and SNRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening haemorrhages.

Patients should be cautioned about the risk of bleeding associated with the concomitant use of Mylan-Escitalopram and NSAIDs, ASA, or other drugs that affect coagulation (see DRUG INTERACTIONS). Caution is advised in patients with a history of bleeding disorder or predisposing conditions (e.g. thrombocytopenia).

HEPATIC/BILIARY/PANCREATIC

HEPATIC IMPAIRMENT

Based on a study conducted with escitalopram oxalate in patients with mild to moderate hepatic impairment, the half-life was approximately doubled and the exposure was increased by approximately two thirds, compared to subjects with normal liver function. Consequently, the use of escitalopram oxalate in hepatically impaired patients should be approached with caution and a lower dosage is recommended (see DOSAGE AND ADMINISTRATION). No information is available about the pharmacokinetics of escitalopram in patients with severe hepatic impairment (Child-Pugh Criteria C). Mylan-Escitalopram should be used with additional caution in patients with severe hepatic impairment.

NEUROLOGIC

SEIZURES

Escitalopram oxalate has not been systematically evaluated in patients with a seizure disorder. These patients were excluded from the clinical studies. In clinical trials with escitalopram oxalate, convulsions have been reported very rarely (2 out of 3981 patients) in association with treatment with escitalopram. From post-marketing data, the reporting of seizures with escitalopram oxalate is comparable to that of other antidepressants. Like other antidepressants, escitalopram oxalate should be used with caution in patients with a history of seizure disorder. Escitalopram oxalate should be discontinued if a patient develops seizures for the first time, or if there is an increase in seizure frequency (in patients with a previous diagnosis of epilepsy). SSRIs should be avoided in patients with unstable epilepsy, and patients with controlled epilepsy should be closely monitored.

SEROTONIN SYNDROME/NEUROLEPTIC MALIGNANT SYNDROME (NMS)-LIKE EVENTS

On rare occasions serotonin syndrome or neuroleptic malignant syndrome-like events have occurred in association with treatment with SSRIs, including escitalopram oxalate, particularly when given in combination with other serotonergic and/or neuroleptic drugs. As these syndromes may result in potentially life-threatening conditions, treatment with Mylan-Escitalopram should be discontinued if such events (characterized by clusters of symptoms such as hyperthermia, rigidity, myoclonus, autonomic instability with possible rapid fluctuations of vital signs, mental status changes including confusion, irritability, extreme agitation progressing to delirium and coma) occur and supportive symptomatic treatment should be initiated. Mylan-Escitalopram should not be used in combination with MAO inhibitors or serotonin-precursors (such as L-tryptophan, oxitriptan) and should be used with caution in combination
with other serotonergic drugs (triptans, certain tricyclic antidepressants, lithium, tramadol, St. John’s Wort) due to the risk of serotonergic syndrome (see CONTRAINDICATIONS and DRUG INTERACTIONS, Serotonergic Drugs, Triptans).

OPHTALMOLOGIC

ANGLE-CLOSURE GLAUCOMA
As with other antidepressants, Mylan-Escitalopram can cause mydriasis, which may trigger an angle-closure attack in a patient with anatomically narrow ocular angles. Healthcare providers should inform patients to seek immediate medical assistance if they experience eye pain, changes in vision or swelling or redness in or around the eye.

PSYCHIATRIC

SUICIDE/ SUICIDAL THOUGHTS AND CLINICAL WORSENING
Depression is associated with an increased risk of suicidal thoughts, self harm and suicide (suicide-related events). This risk persists until significant remission occurs. As improvement may not occur during the first few weeks or more of treatment, patients should be closely monitored until such improvement occurs. It is general clinical experience that the risk of suicide may increase in the early stages of recovery. Therefore, high-risk patients should be closely supervised throughout therapy with consideration to the possible need for hospitalization. In order to minimize the opportunity for overdosage, prescription for escitalopram should be written for the smallest quantity of drug consistent with good patient management.

Other psychiatric conditions for which Mylan-Escitalopram is prescribed can also be associated with an increased risk of suicide-related events. In addition, these conditions may be co-morbid with major depressive disorder. The same precautions observed when treating patients with major depressive disorder should therefore be observed when treating patients with other psychiatric disorders.

Patients with a history of suicide-related events, or those exhibiting a significant degree of suicidal ideation prior to commencement of treatment, are known to be at greater risk of suicidal thoughts or suicide attempts, and should receive careful monitoring during treatment. Close supervision of patients and in particular those at high risk should accompany drug therapy especially in early treatment and following dose changes.

Patients (and caregivers of patients) should be alerted about the need to monitor for any clinical worsening, suicidal behaviour or thoughts and unusual changes in behaviour and to seek medical advice immediately if these symptoms present (see WARNINGS AND PRECAUTIONS, General, Potential Association with Behavioural and Emotional Changes, Including self-Harm).

ACTIVATION OF MANIA/HYPOMANIA
In placebo-controlled trials of escitalopram oxalate activation of mania/hypomania was reported in one patient of the n=715, treated with escitalopram oxalate and in none of the n=592 patients treated with placebo. Activation of mania/hypomania has also been reported in a small proportion of patients treated with racemic citalopram, and with other marketed antidepressants.
As with other antidepressants, Mylan-Escitalopram should be used with caution in patients with a history of mania/hypomania.

A major depressive episode may be the initial presentation of bipolar disorder. Patients with bipolar disorder may be at an increased risk of experiencing manic episodes when treated with antidepressants alone. Therefore, the decision to initiate symptomatic treatment of depression should only be made after patients have been adequately assessed to determine if they are at risk for bipolar disorder.

ELECTROCONVULSIVE THERAPY (ECT)
The safety and efficacy of the concurrent use of either escitalopram oxalate or racemic citalopram and ECT have not been studied, and therefore, caution is advisable.

RENAL

HYPONATREMIA
As with other antidepressants, cases of hyponatremia and SIADH (syndrome of inappropriate antidiuretic hormone secretion) have been reported with escitalopram and racemic citalopram as a rare adverse event. The majority of these occurrences have been in elderly individuals, some in patients taking diuretics or who were otherwise volume-depleted. Elderly female patients in particular seem to be a group at risk. Caution should be exercised in patients at risk, such as the elderly, or patients with cirrhosis, or if used in combination with other medications which may cause hyponatraemia.

RENAL IMPAIRMENT
No information is available on the pharmacokinetic or pharmacodynamic effects of escitalopram on patients with renal impairment. Based on the information available for racemic citalopram, no dosage adjustment is needed in patients with mild to moderate renal impairment. Since no information is available on the pharmacokinetic or pharmacodynamic effects of either escitalopram or racemic citalopram in patients with severely reduced renal function (creatinine clearance < 30 mL/min), Mylan-Escitalopram should be used with caution in these patients (see DOSAGE AND ADMINISTRATION).

SPECIAL POPULATIONS

Fertility, Pregnant Women and Newborns:
Male Fertility: Animal data have shown that some SSRIs, may affect sperm quality (see TOXICOLOGY, Reproduction Toxicity). Human case reports with some SSRIs have shown that an effect on sperm quality is reversible. Impact on human fertility has not been observed so far.

Pregnant Women and Newborns: Mylan-Escitalopram should not be used during pregnancy, unless the potential benefit to the patient outweighs the possible risk to the foetus.

Complications following late third trimester exposure to SSRIs:
Newborns should be observed if maternal use of Mylan-Escitalopram continues into the later stages of pregnancy, particularly in the third trimester. If Mylan-Escitalopram is used until or shortly before birth, discontinuation effects in the newborn are possible. Post-marketing reports
indicate that some neonates exposed to SSRIs such as escitalopram oxalate and other antidepressants late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, lethargy, constant crying, somnolence and difficulty sleeping. These symptoms could be due to either discontinuation effects or excess serotonergic activity. In a majority of instances, such complications begin immediately or soon (<24 hours) after delivery. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome (see WARNINGS AND PRECAUTIONS - Serotonin Syndrome/Neuroleptic Malignant Syndrome). When treating a pregnant woman with Mylan-Escitalopram during the third trimester, the physician should carefully consider the potential risks and benefits of treatment (see DOSAGE AND ADMINISTRATION).

Risk of PPHN and exposure to SSRIs:
Epidemiological studies on persistent pulmonary hypertension of the newborn (PPHN) have shown that the use of SSRIs (including escitalopram oxalate) in pregnancy, particularly use in late pregnancy, was associated with an increased risk of PPHN. PPHN occurs in 1-2 per 1,000 live births in the general population and is associated with substantial neonatal morbidity and mortality. In a retrospective case-control study of 377 women whose infants were born with PPHN and 836 women whose infants were born healthy, the risk for developing PPHN was approximately six-fold higher for infants exposed to SSRIs after the 20th week of gestation compared to infants who had not been exposed to antidepressants during pregnancy (Odds Ratio 6.1, 95% CI 2.2-16.8). A study using data from the Swedish Medical Birth Register for 831,324 infants born in 1997-2005 found an increased risk of PPHN of approximately 2-fold associated with patient-reported maternal use of SSRIs in the first trimester of pregnancy (Risk Ratio 2.4, 95% CI 1.2-4.3), and an increased risk of PPHN of approximately 4-fold associated with a combination of patient-reported maternal use of SSRIs in the first trimester and an antenatal SSRI prescription in later pregnancy (Risk Ratio 3.6, 95% CI 1.2-8.3).

Nursing Women:
Studies with escitalopram oxalate have not been performed in nursing mothers, but it is known that racemic citalopram is excreted in human milk and it is expected that escitalopram is also excreted into breast milk. Mylan-Escitalopram should not be administered to nursing mothers unless the expected benefits to the patient outweigh the possible risk to the child; in which case the infant should be closely monitored.

Pediatrics (<18 years of age):
Mylan-Escitalopram is not indicated for use in patients below the age of 18 (see WARNINGS AND PRECAUTIONS, General, Potential Association with Behavioural and Emotional Changes, Including Self-Harm).

Geriatrics (≥ 65 years of age): Approximately 5% of the 715 patients treated with escitalopram oxalate in clinical trials of depressive disorder were 60 years of age or over; elderly patients in these trials received daily doses between 10 and 20 mg. No overall significant differences in safety or effectiveness were observed between the elderly and younger subjects, but the number of elderly patients treated was insufficient to adequately assess for differential responses. Greater
sensitivity of some older individuals to effects of escitalopram cannot be ruled out. In a multiple-dose pharmacokinetic study, the area under the curve (AUC) and half-life of escitalopram were increased by approximately 50% at steady-state in elderly subjects as compared to young subjects. Consequently, elderly patients should be administered lower doses and a lower maximum dose (see PHARMACOKINETICS and DOSAGE AND ADMINISTRATION).

ADVERSE REACTIONS

ADVERSE DRUG REACTION OVERVIEW

Adverse events information for escitalopram oxalate was collected from 715 patients with major depressive disorder (MDD) who were exposed to escitalopram oxalate and from 592 patients who were exposed to placebo in double blind, placebo-controlled trials. During clinical trials, all treatment groups were comparable with respect to gender, age and race. The mean age of patients was 41 years (18 to 76 years). Of these patients, approximately 66% were females and 34% were males.

The adverse event information for escitalopram oxalate in patients with obsessive compulsive disorder (OCD) was collected from two studies with double-blind, placebo controlled treatment periods of up to 24 weeks. In the first study, a total of 227 patients were exposed to escitalopram oxalate and 114 patients were exposed to placebo in a 24-week double blind, placebo-controlled, fixed-dose trial with assessments at weeks 12 and 24. In the second study, 322 patients who initially responded to 16 weeks of open-label escitalopram oxalate treatment were subsequently randomized to double-blind treatment with escitalopram (n=164) or placebo (n=158) for up to 24 weeks. In total, 391 patients were exposed to escitalopram oxalate and 272 patients were exposed to placebo in these two long-term studies. The mean age of patients with OCD included in the trials was approximately 36 to 38 years (ranging from 18 to 67 years). One trial included similar proportions of males and females and the other trial had a slightly higher proportion of females than males (57% females and 43% males).

ADVERSE EVENTS OBSERVED IN CONTROLLED TRIALS

Adverse Events Associated with Discontinuation of Treatment

From the short-term (8-week) placebo-controlled, phase III studies in patients suffering from MDD, the incidence of discontinuation was: 17.3% (124/715) on escitalopram oxalate, 15.7% (64/408) on citalopram and 16.4% (97/592) on placebo. Discontinuation due to adverse events was more common in the active treatment groups (5.9% in escitalopram oxalate and 5.4% in citalopram) than in the placebo group (2.2%).

The events that were associated with discontinuation of escitalopram oxalate in 1% or more of patients at a rate of at least twice that of placebo were: nausea (1.5% vs. 0.2%) and ejaculation failure (1.8% vs. 0.0% of male patients).

During the first 12 weeks of treatment in the 24-week placebo controlled trial, discontinuation of
treatment due to adverse events was reported for 9% and 11% of the 227 OCD patients who were treated with 10 mg/day or 20 mg/day escitalopram oxalate, respectively, compared to 5% of the 114 patients receiving placebo. All patients who discontinued treatment due to adverse events in the escitalopram oxalate groups did so in the first 12 weeks. Eight percent of patients receiving placebo discontinued treatment due to an adverse event during the 24-week period. Adverse events that were associated with discontinuation of at least 1% of patients treated with escitalopram oxalate, and for which the rate was higher than the placebo rate, were: nausea (1.8% vs. 0.0%), insomnia (1.8% vs. 0.9%), and erectile dysfunction (1.1% vs. 0.0%).

Most Frequent Adverse Events
Adverse events that occurred in escitalopram-treated patients in the course of the short-term, placebo-controlled trials with an incidence greater than, or equal to, 10% were: headache and nausea. The incidence of headache was higher in the placebo group, which suggests that this is a non-specific symptom related to the underlying condition or treatment administration. The point prevalence of nausea increased during the first week (as expected with an SSRI) and then decreased to approach placebo levels by the end of the studies.

CLINICAL TRIAL ADVERSE DRUG REACTION

Because clinical trials are conducted under very specific conditions the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse drug reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

MAJOR DEPRESSIVE DISORDER

Table 1 enumerates the incidence of treatment emergent adverse events that occurred in 715 depressed patients who received escitalopram oxalate at doses ranging from 10 to 20 mg/day in placebo-controlled trials of up to 8 weeks in duration. Events included are those occurring in 1% or more of patients treated with escitalopram oxalate, and for which the incidence in patients treated with escitalopram oxalate was greater than the incidence in placebo-treated patients. Reported adverse events were classified using the Medical Dictionary for Regulatory Activities (MedDRA), version 9.1.
<table>
<thead>
<tr>
<th>Body System/Adverse Event</th>
<th>Percentage of Patients Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escitalopram oxalate (n = 715)</td>
</tr>
<tr>
<td></td>
<td>Placebo (n = 592)</td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td></td>
</tr>
<tr>
<td>Palpitations</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Ear and Labyrinth Disorders</td>
<td></td>
</tr>
<tr>
<td>Vertigo</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>Constipation</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Stomach Discomfort</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Infections and Infestations</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>Influenza</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Herpes simplex</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>Weight increased</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Metabolism and Nutrition Disorders</td>
<td></td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Increased appetite</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>Musculoskeletal and Connective Tissue Disorders</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>
TABLE 1

TREATMENT-EMERGENT ADVERSE EVENTS

INCIDENCE IN PLACEBO-CONTROLLED CLINICAL TRIALS

FOR MAJOR DEPRESSIVE DISORDER

<table>
<thead>
<tr>
<th>Body System/Adverse Event</th>
<th>Percentage of Patients Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escitalopram oxalate (n = 715)</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>6.3</td>
</tr>
<tr>
<td>Somnolence</td>
<td>4.1</td>
</tr>
<tr>
<td>Sedation</td>
<td>2.4</td>
</tr>
<tr>
<td>Migraine</td>
<td>1.5</td>
</tr>
<tr>
<td>Tremor</td>
<td>1.5</td>
</tr>
<tr>
<td>Lethargy</td>
<td>1.0</td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>1.0</td>
</tr>
<tr>
<td>Sinus headache</td>
<td>1.0</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>8.2</td>
</tr>
<tr>
<td>Anxiety</td>
<td>2.2</td>
</tr>
<tr>
<td>Libido decreased</td>
<td>2.1</td>
</tr>
<tr>
<td>Anorgasmia</td>
<td>1.8</td>
</tr>
<tr>
<td>Abnormal dreams</td>
<td>1.3</td>
</tr>
<tr>
<td>Respiratory, Thoracic and Mediastinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Pharyngolaryngeal pain</td>
<td>2.1</td>
</tr>
<tr>
<td>Yawning</td>
<td>1.5</td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td></td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>3.4</td>
</tr>
<tr>
<td>Night sweats</td>
<td>1.7</td>
</tr>
<tr>
<td>Rash</td>
<td>1.0</td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td></td>
</tr>
<tr>
<td>Hot flush<sup>1</sup></td>
<td>2.2</td>
</tr>
<tr>
<td>Hot flush<sup>2</sup></td>
<td>1.0</td>
</tr>
<tr>
<td>Reproductive System and Breast Disorders</td>
<td></td>
</tr>
<tr>
<td>Ejaculation delayed<sup>2</sup></td>
<td>3.6</td>
</tr>
<tr>
<td>Ejaculation failure<sup>2</sup></td>
<td>2.7</td>
</tr>
<tr>
<td>Erectile dysfunction<sup>2</sup></td>
<td>2.7</td>
</tr>
<tr>
<td>Ejaculation disorder<sup>2</sup></td>
<td>1.3</td>
</tr>
</tbody>
</table>

*Events included are those occurring in 1% or more of patients treated with escitalopram, and for which the incidence in patients treated with escitalopram was greater than the incidence in placebo-treated patients.

¹Denominator used was for females only (n=490 for escitalopram; n=404 for Placebo).

²Denominator used was for males only (n=225 for escitalopram; n=188 for Placebo).
The following events had a higher incidence in the placebo group compared to the escitalopram oxalate group: vomiting, abdominal pain, flatulence, upper respiratory tract infection, bronchitis, back pain, neck pain, headache.

Adverse reactions observed with escitalopram oxalate are in general mild and transient. They are most frequent during the first and/or second week of treatment and usually decrease in intensity and frequency with continued treatment and do not generally lead to a cessation of therapy.

In a clinical trial involving patients with Major Depressive Disorder that compared fixed doses of escitalopram (10 mg/day and 20 mg/day) with placebo, the most common adverse events that occurred in patients treated with escitalopram are shown in Table 2.

TABLE 2
INCIDENCE OF COMMON ADVERSE EVENTS
FOR MAJOR DEPRESSIVE DISORDER, STUDY MD-01

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Percentage of Patients Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo</td>
</tr>
<tr>
<td></td>
<td>(n = 122)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>7.4</td>
</tr>
<tr>
<td>Insomnia</td>
<td>1.6</td>
</tr>
<tr>
<td>Mouth dry</td>
<td>7.4</td>
</tr>
<tr>
<td>Dizziness</td>
<td>3.3</td>
</tr>
<tr>
<td>Ejaculation failure</td>
<td>0.0</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>1.6</td>
</tr>
<tr>
<td>Constipation</td>
<td>1.6</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>1.6</td>
</tr>
<tr>
<td>Pharyngolaryngeal pain</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Events included are those occurring in 5% or more of patients treated with escitalopram (10 mg/day or 20 mg/day), and for which the incidence was greater than the incidence in placebo-treated patients.

Male and Female Sexual Dysfunction with SSRIs
While sexual dysfunction is often part of depression and other psychiatric disorders, there is increasing evidence that treatment with selective serotonin reuptake inhibitors (SSRIs) may induce sexual side effects. This is a difficult area to study because patients may not spontaneously report symptoms of this nature, and therefore, it is thought that sexual side effects with SSRIs may be underestimated.

Table 3 shows the incidence rates of sexual side effects in patients with major depressive disorder in placebo-controlled short-term trials.
<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Percentage of Patients Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escitalopram oxalate (n = 715)</td>
</tr>
<tr>
<td>Libido decreased</td>
<td>2.1</td>
</tr>
<tr>
<td>Anorgasmia</td>
<td>1.8</td>
</tr>
<tr>
<td>In Males only</td>
<td></td>
</tr>
<tr>
<td>Ejaculation delayed</td>
<td>3.6</td>
</tr>
<tr>
<td>Ejaculation failure</td>
<td>2.7</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>2.7</td>
</tr>
<tr>
<td>Ejaculation disorder</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Obsessive Compulsive Disorder

Table 4 enumerates the incidence of treatment emergent adverse events that occurred among 227 patients who received escitalopram oxalate in the first 12 weeks of a 24-week placebo-controlled trial. Events included are those occurring in 1% or more of patients treated with escitalopram oxalate, and for which the incidence in patients treated with escitalopram oxalate was greater than the incidence in placebo-treated patients. Reported adverse events were classified using the Medical Dictionary for Regulatory Activities (MedDRA), version 9.1.

The most frequent adverse events that occurred in escitalopram oxalate-treated patients in the course of the short-term, placebo-controlled trials with an incidence greater than, or equal to, 10% were: headache, nausea and fatigue.
TABLE 4
TREATMENT-EMERGENT ADVERSE EVENTS*
INCIDENCE IN A PLACEBO-CONTROLLED CLINICAL TRIAL
FOR OBSESSIVE COMPULSIVE DISORDER
(FIRST 12 WEEKS OF A 24-WEEK TRIAL)

<table>
<thead>
<tr>
<th>Body System/Adverse Event</th>
<th>Percentage of Patients Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escitalopram oxalate (n = 227)</td>
</tr>
<tr>
<td></td>
<td>Placebo (n = 114)</td>
</tr>
<tr>
<td>Eye Disorder</td>
<td></td>
</tr>
<tr>
<td>Visual disturbance</td>
<td>1.3</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>23.3</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>6.6</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>6.2</td>
</tr>
<tr>
<td>Constipation</td>
<td>2.6</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2.6</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>14.1</td>
</tr>
<tr>
<td>Asthenia</td>
<td>1.3</td>
</tr>
<tr>
<td>Infections and Infestations</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>6.6</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>2.2</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>1.3</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>Weight increased</td>
<td>1.3</td>
</tr>
<tr>
<td>Metabolism and Nutrition Disorders</td>
<td></td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>2.2</td>
</tr>
<tr>
<td>Musculoskeletal and Connective Tissue Disorders</td>
<td></td>
</tr>
<tr>
<td>Neck pain</td>
<td>1.8</td>
</tr>
<tr>
<td>Back pain</td>
<td>1.3</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>19.4</td>
</tr>
<tr>
<td>Dizziness</td>
<td>7.9</td>
</tr>
<tr>
<td>Somnolence</td>
<td>8.4</td>
</tr>
<tr>
<td>Tremor</td>
<td>3.5</td>
</tr>
<tr>
<td>Migraine</td>
<td>1.3</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td></td>
</tr>
<tr>
<td>Libido decreased</td>
<td>4.8</td>
</tr>
<tr>
<td>Restlessness</td>
<td>2.2</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>1.8</td>
</tr>
<tr>
<td>Abnormal dreams</td>
<td>1.3</td>
</tr>
</tbody>
</table>
TABLE 4
TREATMENT-EMERGENT ADVERSE EVENTS* INCIDENCE IN A PLACEBO-CONTROLLED CLINICAL TRIAL FOR OBSESSIVE COMPULSIVE DISORDER (FIRST 12 WEEKS OF A 24-WEEK TRIAL)

<table>
<thead>
<tr>
<th>Body System/Adverse Event</th>
<th>Percentage of Patients Reporting</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escitalopram oxalate (n = 227)</td>
<td>Placebo (n = 114)</td>
<td></td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejaculation delayed</td>
<td>7.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>1.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Respiratory, Thoracic and Mediastinal Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yawning</td>
<td>1.8</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>5.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td>1.5</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
| *Events included are those occurring in 1% or more of patients treated with escitalopram oxalate, and for which the incidence in patients treated with escitalopram oxalate was greater than the incidence in placebo-treated patients.
1Denominator used was for females only (n=135 for escitalopram oxalate; n=63 for Placebo).
2Denominator used was for males only (n=92 for escitalopram oxalate; n=51 for Placebo).

The following events had a higher incidence in the placebo group compared to the escitalopram oxalate group: abdominal pain upper, irritability, influenza, anorexia, increased appetite, insomnia, anxiety, erectile dysfunction.

In general, the safety profile of the placebo-controlled study at 24 weeks was similar to the one observed in the first 12 weeks of the trial.

In both phases of the long-term study of patients who were randomized to receive 24 weeks of double-blind treatment with escitalopram oxalate or placebo, following response to an initial 16 weeks of open-label escitalopram oxalate treatment, the safety profile of escitalopram oxalate was similar to the safety profile in the above mentioned placebo controlled trial. Adverse events reported by at least 2% of patients after the open-label period and during the first 2 weeks after randomization were: dizziness (15.8% placebo vs 0.6% escitalopram oxalate); nausea (5.7% placebo vs 0.6% escitalopram oxalate); headache (4.4% placebo vs 1.8% escitalopram oxalate); and insomnia (3.2% placebo vs 0.6% escitalopram oxalate).

The most common AEs that occurred during treatment with 10 mg/day and 20 mg/day escitalopram oxalate in this clinical trial are shown in Table 5.
TABLE 5
INCIDENCE OF COMMON ADVERSE EVENTS¹
FOR OBSESSIVE COMPULSIVE DISORDER
(FIRST 12 WEEKS OF 24-WEEK TRIAL, STUDY 10205)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Placebo (n = 114)</th>
<th>Escitalopram oxalate 10 mg/day (n =113)</th>
<th>Escitalopram oxalate 20 mg/day (n =114)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>12.3</td>
<td>19.5</td>
<td>27.2</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5.3</td>
<td>11.5</td>
<td>16.7</td>
</tr>
<tr>
<td>Somnolence</td>
<td>5.3</td>
<td>6.2</td>
<td>10.5</td>
</tr>
<tr>
<td>Ejaculation delayed</td>
<td>0.0</td>
<td>4.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>4.4</td>
<td>4.4</td>
<td>7.0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>5.3</td>
<td>8.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>3.5</td>
<td>7.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Libido decreased</td>
<td>0.9</td>
<td>2.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>3.5</td>
<td>4.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>1.8</td>
<td>6.2</td>
<td>5.3</td>
</tr>
</tbody>
</table>

¹Events included are those occurring in 5% or more of patients treated with escitalopram oxalate (10 mg/day or 20 mg/day), and for which the incidence was greater than the incidence in placebo-treated patients.

In general, the adverse event profile that occurred among the patients who received escitalopram oxalate during the 24 weeks of the trial was similar to the profile observed in the first 12 weeks of the trial.

Weight Changes

Patients treated with escitalopram oxalate in short-term controlled trials did not differ from placebo-treated patients with regards to clinically important change in body weight.

Cardiovascular parameters

Escitalopram oxalate and placebo groups in MDD patients were compared with respect to mean change from baseline in vital signs (pulse, systolic blood pressure, and diastolic blood pressure) and the incidence of patients meeting criteria for potentially clinically significant changes from baseline in these variables. The analyses did not reveal any clinically important changes in blood pressure associated with escitalopram oxalate treatment. In line with other SSRIs, including racemic citalopram, escitalopram oxalate causes statistically significant, but clinically unimportant decrease in heart rate. In MDD patients < 60 years old, the mean decrease with escitalopram oxalate was approximately 2.3 bpm, while in patients ≥ 60 years old, the mean decrease was approximately 0.6 bpm.
ADVERSE REACTIONS FOLLOWING DISCONTINUATION OF TREATMENT (OR DOSE REDUCTION)

There have been reports of adverse reactions upon the discontinuation of SSRIs such as escitalopram oxalate (particularly when abrupt), including but not limited to the following: dizziness, abnormal dreams, sensory disturbances (including paresthesias and electric shock sensations), agitation, anxiety, emotional indifference, impaired concentration, headache, migraine, tremor, nausea, vomiting and sweating or other symptoms which may be of clinical significance (see WARNINGS AND PRECAUTIONS and DOSAGE AND ADMINISTRATION).

Patients should be monitored for these or any other symptoms. A gradual reduction in the dosage over several weeks, rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, dose titration should be managed on the basis of the patient’s clinical response. These events are generally self-limiting. Symptoms associated with discontinuation have been reported for other selective serotonin reuptake inhibitors (see WARNINGS AND PRECAUTIONS and DOSAGE AND ADMINISTRATION).

ADVERSE REACTIONS DURING TREATMENT FOR UP TO 44 WEEKS

The Treatment-Emergent Adverse Event incidence profile of escitalopram oxalate in a longer term study in patients with major depressive disorder (MDD) consisting of a 36-week placebo-controlled relapse observation phase in responders of a preceding 8-week acute treatment phase was similar to that observed in short-term studies.

LESS COMMON CLINICAL TRIAL ADVERSE DRUG REACTIONS

Untoward events associated with the exposure were recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of untoward events into a smaller number of standardized event categories. Reported adverse events were classified using the Medical Dictionary for Regulatory Activities, version 9.1.

The events listed below present treatment emergent adverse events reported during the clinical development program of escitalopram oxalate in depressed patients (n=896), which includes a long-term clinical trial in OCD patients included in a long-term (24 weeks with assessments at 12 weeks and 24 weeks) trial (n=227). Excluded from this list are those already listed in Table 1 (MDD), or 4 (OCD first 12 weeks of a 24 week trial).

It is important to emphasize that, although the events reported occurred during treatment with escitalopram oxalate, they were not necessarily caused by it. The events are categorized by body system and listed according to the following criteria: frequent: adverse events that occurred on one or more occasions in at least 1/100 patients; infrequent: adverse events that occurred in less
than 1/100 patients but at least in 1/1000 patients; *rare*: adverse events that occurred in less than 1/1000 patients but at least in 1/10000 patients.

Blood and Lymphatic System Disorders

Cardiac Disorders
Rare: Atrial fibrillation, atrial ventricular block first degree, bradycardia, extrasystoles, myocarditis, nodal rhythm, sinus bradycardia.

Congenital, Familial and Genetic Disorders
Rare: Epidermal naevus, Gilbert’s syndrome.

Ear and Labyrinth Disorders

Endocrine Disorders
Rare: Goitre, hyperthyroidism, thyroiditis.

Eye Disorders
Infrequent: Accommodation disorder, blepharospasm, conjunctivitis, dry eye, eye pain, eye pruritus, mydriasis, photopsia, vision blurred. *Rare*: Asthenopia, chromatopsia, eye haemorrhage, eye irritation, eye swelling, eyelid oedema, iritis, keratoconus, myopia, night blindness, retinal detachment, scotoma, vitreous detachment.

Gastrointestinal Disorders
Infrequent: Abdominal discomfort, abdominal distension, Crohn’s disease, dysphagia, enteritis, epigastric discomfort, food poisoning, frequent bowel movements, gastrointestinal pain, gastrooesophageal reflux disease, gastritis, hemorrhoids, lip dry, rectal hemorrhage. *Rare*: Anal fissure, colitis ulcerative, colonic polyp, eructation, gingival pain, haematemesis, haematochezia, ileitis, oral pain, pruritus ani, reflux gastritis, stomatitis, tongue black hairy, tongue disorder, tooth disorder, tooth erosion.

General Disorders and Administration Site Conditions
Infrequent: Chest discomfort, chest pain, feeling abnormal, feeling jittery, influenza like illness, malaise, oedema, oedema peripheral, pain, respiratory sighs, sluggishness, thirst. *Rare*: Early satiety, face oedema, feeling hot, hunger, local swelling, performance status decreased, sensation of blood flow.

Immune System Disorders
Infections and Infestations
Infrequent: Acute sinusitis, bronchitis acute, cystitis, ear infection, eye infection, folliculitis, fungal infection, gastrointestinal infection, laryngitis, lung infection, pelvic inflammatory disease (gs = Gender Specific), otitis media, pharyngitis, pharyngitis streptococcal, pneumonia, respiratory tract infection, skin infection, tooth abscess, tonsillitis, tooth infection, urinary tract infection, vaginal candidiasis (gs), viral infection, viral upper respiratory tract infection, vulvovaginal mycotic infection (gs). *Rare:* Appendicitis, bronchitis viral, carbuncle, cellulitis, dental caries, erysipelas, furuncle, genitourinary chlamydia infection, gingival infection, impetigo, infection parasitic, mastitis, onychomycosis, otitis externa, peritonsillar abcess, pyelonephritis acute, rash pustular, salmonellosis, staphylococcal infection, streptococcal infection, tracheitis, vaginal infection, varicella, wound infection.

Injury, Poisoning and Procedural Complications

Investigations
Infrequent: blood glucose increased, blood pressure increased, body temperature increased, heart rate increased, weight decreased. *Rare:* Arthroscopy, blood bilirubin increased, blood cholesterol increased, blood uric acid increased, blood urine present, electrocardiogram PR shortened, haemoglobin decreased, hepatic enzyme increased, pregnancy test positive (gs).

Metabolism and Nutrition Disorders
Infrequent: Food craving. *Rare:* Dehydration, gout, hypercholesterolaemia, hypermagnesaemia, hyperphagia, hyponatraemia, latent tetany.

Musculoskeletal and Connective Tissue Disorders
Infrequent: Arthritis, joint stiffness, muscle contracture, muscle spasms, muscle tightness, muscle twitching, muscular weakness, musculoskeletal chest pain, musculoskeletal discomfort, musculoskeletal stiffness, osteoarthritis, pain in jaw. *Rare:* Chest wall pain, costochondritis, exostosis, fibromyalgia, finger deformity, ganglion, intervertebral disc protrusion, musculoskeletal pain, plantar fasciitis, rheumatoid arthritis, sacroiliitis, sensation of heaviness, tendon disorder.

Neoplasms Benign, Malignant and Unspecified (incl. cysts and polyps)
Infrequent: Breast neoplasm. *Rare:* Benign breast neoplasm, lipoma, marrow hyperplasia, skin papilloma, uterine leiomyoma (gs).
Nervous System
Infrequent: Amnesia, balance disorder, burning sensation, carpal tunnel syndrome, coordination abnormal, dizziness postural, disturbance in attention, dysgeusia, hyperreflexia, hypersomnia, hypertonia, hypoaesthesia, memory impairment, muscle contractions involuntary, restless legs syndrome, sciatica, syncope, taste disturbance, tension headache. Rare: Dysesthesia, dysphasia, facial paresis, facial spasm, head discomfort, hypogeusia, myoclonus, paralysis, psychomotor hyperactivity, sensory disturbance, sleep talking, syncope vasovagal.

Pregnancy, Puerperium and Perinatal Conditions
Infrequent: Pregnancy (gs).

Psychiatric Disorders
Infrequent: Agitation, apathy, bruxism, confusional state, crying, depersonalization, depressed mood, derealization, disorientation, early morning awakening, emotional disorder, hallucination auditory, initial insomnia, libido increased, mania, mental disorder, middle insomnia, mood swings, nervousness, obsessive-compulsive disorder, panic attack, suicidal ideation, suicide attempt, tension, thinking abnormal. Rare: Aggression, emotional distress, euphoric mood, flat affect, generalized anxiety disorder, hallucination, hypomania, indifference, major depression, paranoia, psychomotor retardation, tic.

Renal and Urinary Disorders
Infrequent: Dysuria, haematuria, micturition urgency, urinary hesitation. Rare: Bladder dilatation, bladder discomfort, chromaturia, nocturia, renal pain, urinary incontinence.

Reproductive System and Breast Disorders
Infrequent: Amenorrhoea (gs), epididymitis (gs), menstrual disorder (gs), menstruation irregular (gs), metrorrhagia (gs), orchitis noninfective (gs), painful erection (gs), pelvic pain, premenstrual syndrome (gs), postmenopausal haemorrhage (gs), sexual dysfunction, testicular pain (gs). Rare: Breast discharge, breast pain, breast tenderness, genital pain, menopausal symptoms (gs), uterine spasm (gs), vaginal discharge (gs), vaginal haemorrhage (gs).

Respiratory, Thoracic and Mediastinal Disorders
Infrequent: Asthma, cough, dyspnoea, epistaxis, nasal congestion, postnasal drip, rhinitis allergic, rhinorrhea, throat irritation, wheezing. Rare: Allergic sinusitis, choking, dysphonia, nasal polyp, rhinitis perennial, throat tightness, tracheal disorder.

Skin and Subcutaneous Tissue Disorders
Infrequent: Acne, alopecia, dermatitis allergic, dermatitis contact, dry skin, eczema, increased tendency to bruise, rash, urticaria. Rare: Cold sweat, dermal cyst, dermatitis, dermatitis acniform, dermatitis atopic, hand dermatitis, ingrowing nail, photosensitivity reaction, rash maculo-papular, skin irritation, skin nodule, skin odor abnormal, skin warm.

Social Circumstances
Infrequent: Drug abuser. Rare: Family stress, stress at work.
Surgical and Medical Procedures
Infrequent: Tooth extraction. Rare: Colon polypectomy, gingival operation, scar excision.

Vascular Disorders
Infrequent: Flushing, haematoma, hypertension, hypotension, orthostatic hypotension, peripheral coldness, varicose vein. Rare: Circulatory collapse, pallor, vein disorder.

LONG-TERM PLACEBO-CONTROLLED TRIAL IN ESCITALOPRAM RESPONDERS (OCD)
In general, the safety profile was similar in the long-term (24-week) placebo-controlled phase of the trial in which patients who initially responded to 16 weeks of open-label escitalopram oxalate treatment were randomized to treatment with escitalopram oxalate or placebo for up to 24 weeks. The following events (single or duplicate cases), which are not reported elsewhere, have been reported: abdominal pain lower, acute tonsillitis, blood pressure decreased, dental operation, depressive symptoms, dysarthria, dyspareunia, epicondylitis, facial pain, haematochezia, hordeolum, infrequent bowel movements, laceration, lacrimation increased, limb operation, negative thoughts, neuralgia, pain inflammation activated, subcutaneous abscess, tendon injury, wisdom teeth removal.

POST-MARKET ADVERSE DRUG REACTIONS
During the 9.5 years of post marketing experience, it is estimated that more than 265 million patients have been treated with escitalopram, which corresponds to more than 66 million patient-years of treatment.

The following adverse events have been identified during post approval use of escitalopram oxalate tablets. These events are reported voluntarily from a population of uncertain size, and it is not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Adverse Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic disorders</td>
<td>Leukocytosis, Leukopenia, Thrombocytopenia</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac arrest, Electrocardiogram QT prolonged, Myocardial infarction, Myocardial ischaemia, Ventricular arrhythmia, Torsades de pointes, Ventricular tachycardia</td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td>Alanine aminotransferase increased, Aspartate aminotransferase increased, Hyperprolactinemia, SIADH</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Amblyopia, Diplopia, Visual Disturbance</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Gastrointestinal haemorrhage, Gingival bleeding, Pancreatitis</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Death NOS, Feeling abnormal, Gait abnormal, Irritability, Pyrexia</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Investigations</td>
<td>Blood alkaline phosphatase increased, Drug level increased, Electrocardiogram QT prolonged, INR increased, Liver function tests abnormal, Neurotransmitter level altered, Platelet count decreased</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Fluid retention, Hypoglycaemia</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Muscle cramps, Rhabdmyolysis, Trismus</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Akathisia, Cerebrovascular accident, Clonic convulsion, Coma, Dysarthria, Dyskinesia, Dysphasia, Extrapyramidal disorder, Facial palsy, Grand mal convulsion, Loss of consciousness, Neuroleptic malignant syndrome, Movement disorder, Petit mal epilepsy, Serotonin syndrome, Speech disorder, Tardive dyskinesia, Vasovagal attack</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Delirium, Hallucination visual, Panic reaction, Psychomotor restlessness, Restlessness, Suicidal behavior</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Renal failure acute, Urinary retention</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Galactorrhoea, Menometrorrhagia, Priapism</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorder</td>
<td>Hyperventilation, Pulmonary embolism, Rhinorrhoea</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Angioedema, Ecchymosis, Epidermal necrolysis, Stevens-Johnson syndrome</td>
</tr>
</tbody>
</table>

Cardiac disorders
QT interval prolongation
Escitalopram has been found to cause a dose-dependent prolongation of the QT interval. Cases of QT interval prolongation and ventricular arrhythmia including torsade de pointes have been
reported during the post-marketing period, predominantly in patients of female gender, with hypokalaemia, or with pre-existing QT interval prolongation or other cardiac diseases. In a double-blind, placebo-controlled ECG study in healthy subjects, the change from baseline in QTc (Friderecia-correction) was 4.3 ms (90% CI: 2.2, 6.4) at the 10 mg/day dose and 10.7 ms (90% CI: 8.6, 12.8) at the 30 mg/day dose. Based on the established exposure-response relationship, the predicted QTc (Friderecia-correction) change from placebo arm (95% confidence interval) under the Cmax for the dose of 20 mg is 6.6 (7.9) msec. Statistically significant decreases in heart rate of mean 2-5 bpm were also observed during treatment with escitalopram oxalate at 10 mg and 30 mg in these healthy subjects. (See CONTRAINDICATIONS, WARNINGS AND PRECAUTIONS/QT Interval Prolongation, Drug Interactions/QT Interval Prolongation)

DRUG INTERACTIONS

<table>
<thead>
<tr>
<th>Serious Drug Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Monoamine Oxidase Inhibitors: see CONTRAINDICATIONS.</td>
</tr>
<tr>
<td>• Pimozide: see CONTRAINDICATIONS.</td>
</tr>
</tbody>
</table>

OVERVIEW

Escitalopram is the active enantiomer of racemic citalopram. The pharmacokinetic studies described in the following sections, whether using escitalopram oxalate or racemic citalopram, were carried out in young healthy, mostly male volunteers. In addition, many of the studies utilized single doses of the specific concomitant medication, with multiple dosing of escitalopram oxalate or citalopram. Thus, data are not available in patients who would be receiving the concomitant drugs on an ongoing basis at therapeutic doses.

DRUG-DRUG INTERACTIONS

Monoamine Oxidase Inhibitors (MAOIs)

Combined use of Mylan-Escitalopram and MAO inhibitors is contraindicated due to the potential for serious reactions with features resembling serotonin syndrome or neuroleptic malignant syndrome (see CONTRAINDICATIONS; WARNINGS AND PRECAUTIONS, Serotonin Syndrome/Neuroleptic Malignant Syndrome). In patients receiving SSRIs in combination with a monoamine oxidase inhibitor (MAOI), there have been reports of serious, sometimes fatal, reactions including hyperthermia, rigidity, myoclonus, autonomic instability with possible rapid fluctuations of vital signs, and mental status changes, including extreme agitation progressing to delirium and coma. These reactions have also been reported in patients who have recently discontinued SSRIs treatment and have been started on a MAOI. Some cases presented with features resembling serotonin syndrome or neuroleptic malignant syndrome. Escitalopram oxalate should not be used in combination with a MAOI, (including linezolid, an antibiotic which is a reversible non-selective MAO inhibitor, and methylene blue, which is a MAOI)
within 14 days of discontinuing treatment with a MAOI. Similarly, at least 14 days should elapse after discontinuing Mylan-Escitalopram treatment before starting a MAOI (see CONTRAINDICATIONS).

Cytochrome P450 Isozymes

Citalopram: Based on the results of broad in vitro and in vivo testing, racemic citalopram is neither the source nor the cause of any clinically important pharmacokinetic drug-drug interactions. In vitro enzyme inhibition data did not reveal an inhibitory effect of citalopram on CYP3A4, -1A2, -2D6, -2C9, -2C19 and -2E1. Accordingly, escitalopram would be expected to have little inhibitory effect on in vivo drug metabolism mediated by the cytochrome P-450 isozymes. In addition, pharmacokinetic interaction studies with racemic citalopram have also demonstrated no clinical important interactions with carbamazepine (CYP3A4 substrate), triazolam (CYP3A4 substrate), theophylline (CYP1A2 substrate), warfarin (CYP2C9 substrate), levomepromazine (CYP2D6 inhibitor).

Escitalopram: Using in vitro models of human liver microsomes, the biotransformation of escitalopram to its demethylated metabolites was shown to depend on three parallel pathways (CYP2C19, CYP3A4 with a smaller contribution from CYP2D6) (see DOSAGE AND ADMINISTRATION, CYP2C19 Poor metabolizers).

Studies also indicate that escitalopram is a very weak or negligible inhibitor of human hepatic isoenzyme CYP1A2, 2C9, 2C19, 2E1, and 3A4, and a weak inhibitor of 2D6. Although escitalopram has a low potential for clinically significant drug interactions, caution is recommended, when escitalopram is co-administered with drugs that are mainly metabolized by CYP2D6, and that have a narrow therapeutic index.

The possibility that the clearance of escitalopram will be decreased when administered with the following drugs in a multiple-dose regimen should be considered:

- potent inhibitors of CYP3A4 (e.g., fluconazole, ketoconazole, itraconazole, erythromycin), or
- potent inhibitors of CYP2C19 (e.g., omeprazole, esomeprazole, fluvoxamine, lansoprazole, ticlopidine). Caution should be exercised at the upper end of the dosage range of escitalopram when it is co-administered with CYP2C19 inhibitors.

In addition, a single-dose study of escitalopram co-administered with a multiple-dose regimen of cimetidine, a non-specific CYP inhibitor, led to significant changes in most of the pharmacokinetic parameters of escitalopram.

The overall metabolic pathways for escitalopram and citalopram are qualitatively similar and the interaction potential for escitalopram is expected to closely resemble that of citalopram. Thus, this allows for extrapolation to previous studies with citalopram.
CNS drugs
Drug interactions have not been specifically studied between either escitalopram or racemic citalopram and other centrally acting drugs. Given the primary CNS effects of escitalopram oxalate, caution should be used as with other SSRIs when Mylan-Escitalopram is taken in combination with other centrally acting drugs.

Serotonergic Drugs:
Based on the mechanism of action of escitalopram and the potential for serotonin syndrome, caution is advised when Mylan-Escitalopram is coadministered with other drugs or agents that may affect the serotonergic neurotransmitter systems, such as tryptophan, triptans, serotonin reuptake inhibitors, lithium, St. Johns Wort, fentanyl and its analogues, some antidepressants, dextrometorphan, tramadol, tapentadol, meperidine, methadone and pentazocine (see WARNINGS AND PRECAUTIONS, Serotonin Syndrome/Neuroleptic Malignant Syndrome (NMS)-like events). Concomitant use of escitalopram oxalate and MAO inhibitors (including linezolid, an antibiotic which is a reversible non-selective MAO inhibitor) is contraindicated (see CONTRAINDICATIONS).

Triptans (5HT_1 agonists):
Cases of life-threatening serotonin syndrome have been reported during combined use of selective serotonin reuptake inhibitors (SSRIs)/serotonin norepinephrine reuptake inhibitors (SNRIs) and triptans. If concomitant treatment with Mylan-Escitalopram and a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS AND PRECAUTIONS: Serotonin Syndrome/Neuroleptic Malignant Syndrome (NMS)-like events).

Drugs Affecting Platelet Function (e.g. NSAIDs, ASA and other anticoagulants)
Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID, ASA or other anticoagulants may potentiate the risk of bleeding.

Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are co-administered with warfarin. Patients receiving warfarin therapy should be carefully monitored when Mylan-Escitalopram is initiated or discontinued. (see WARNINGS AND PRECAUTIONS, Hematologic, Abnormal Bleeding)

Racemic Citalopram
As escitalopram is the active isomer of racemic citalopram, the two drugs should not be taken together.

Alcohol use
The interaction between escitalopram and alcohol has not been studied. Although racemic citalopram did not potentiate the cognitive and psychomotor effects of alcohol in volunteers, the concomitant use of alcohol in depressed patients taking escitalopram is not recommended.

QT interval prolongation
Pharmacokinetic and pharmacodynamic studies of escitalopram combined with other medicinal products that prolong the QT interval have not been performed. An additive effect of escitalopram and these medicinal products cannot be excluded. Therefore, co-administration of escitalopram with medicinal products that have a clear QT interval prolonging effect, such as Class IA and III antiarrhythmics, certain antipsychotics (e.g. ziprasidone), tricyclic antidepressants, opioids (e.g. methadone), certain antimicrobial agents (e.g. moxifloxacin), is discouraged. The concomitant use of Mylan-Escitalopram tablets with drugs that can disrupt electrolyte levels is discouraged. Drugs that decrease electrolyte levels include, but are not limited to, the following: loop, thiazide, and related diuretics; laxatives and enemas; amphotericin B; high dose corticosteroids. The above lists of potentially interacting drugs are not comprehensive. (See also CONTRAINDICATIONS, ADVERSE REACTIONS/POST-MARKET ADVERSE DRUG REACTIONS/Cardiac Disorders)

Polymorphism
It has been observed that poor metabolizers with respect to CYP2C19 have twice as high a plasma concentration of escitalopram as extensive metabolizers. (See DOSAGE AND ADMINISTRATION, CYP2C19 Poor metabolizers). Although no significant change in exposure was observed in poor metabolizers with respect to CYP2D6, caution is recommended when escitalopram is co-administered with medicinal products that are mainly metabolized by this enzyme, and that have a narrow therapeutic index.
Interaction data which include studies conducted with escitalopram

Table 7. Established or Predicted Drug-Drug Interactions with escitalopram

<table>
<thead>
<tr>
<th>Escitalopram</th>
<th>Reference</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimetidine</td>
<td>CT</td>
<td>Co-administration of cimetidine (400 mg twice daily for 5 days), a moderately potent CYP2D6, 3A4 and 1A2 inhibitor, with escitalopram oxalate (single dose of 20 mg on day 4) resulted in an increase in escitalopram AUC and C<sub>max</sub> of approximately 70% and 20%, respectively.</td>
<td>Caution should be exercised when used concomitantly with cimetidine. A reduction in the dose of escitalopram may be necessary based on clinical judgement. A maximum dose of 10 mg/day escitalopram should not be exceeded.</td>
</tr>
<tr>
<td>Imipramine/ Desipramine: substrate for CYP2D6</td>
<td>CT</td>
<td>Co-administration of escitalopram oxalate (20 mg/day for 21 days) with the tricyclic antidepressant desipramine (single dose of 50 mg), a substrate for CYP2D6, resulted in a 50% increase in desipramine concentrations.</td>
<td>The clinical significance of this finding is unknown. Consequently, concomitant treatment with escitalopram and imipramine/desipramine should be undertaken with caution.</td>
</tr>
<tr>
<td>Metoprolol: substrate for CYP2D6</td>
<td>CT</td>
<td>Co-administration of 20 mg/day of escitalopram oxalate for 21 days with metoprolol (a CYP2D6 substrate) resulted in a 50% increase in the peak plasma levels of the β-adrenergic blocker with no clinically significant effects on blood pressure or heart rate.</td>
<td></td>
</tr>
<tr>
<td>Omeprazole: CYP2C19 inhibitor</td>
<td>CT</td>
<td>Co-administration of omeprazole (30 mg once daily for 6 days), a CYP2C19 inhibitor, with escitalopram oxalate (single dose of 20 mg on day 5) resulted in an increase in escitalopram AUC and C<sub>max</sub> of approximately 50% and 10%, respectively.</td>
<td>Caution should be exercised when used concomitantly with CYP2C19 inhibitors (e.g. omeprazole). A reduction in the dose of escitalopram may be necessary based on clinical judgement. A maximum dose of 10 mg/day escitalopram should not be exceeded.</td>
</tr>
<tr>
<td>Ritonavir: substrate for CYP3A4</td>
<td>CT</td>
<td>Combined administration of a single dose of ritonavir (600 mg), a CYP3A4 substrate and a potent inhibitor of CYP3A4, and escitalopram oxalate (20 mg) did not affect the pharmacokinetics of either ritonavir or escitalopram.</td>
<td></td>
</tr>
</tbody>
</table>

Legend: CT = Clinical Trial
Interaction studies conducted with racemic citalopram.

Table 8. Established or Predicted Drug-Drug Interactions with Racemic Citalopram

<table>
<thead>
<tr>
<th>Racemic Citalopram</th>
<th>Reference</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>CT</td>
<td>Carbamazepine, titrated to 400 mg/day, was given for 21 days alone and then in combination with racemic citalopram (40 mg/day) for an additional 14 days. Citalopram did not affect the plasma levels of carbamazepine, a CYP3A4 substrate, or its metabolite, carbamazepine-epoxide.</td>
<td>Since carbamazepine is a microsomal enzyme inducer, the possibility that carbamazepine may increase the clearance of escitalopram should be considered if the two drugs are given concomitantly.</td>
</tr>
<tr>
<td>Digoxin</td>
<td>CT</td>
<td>Administration of racemic citalopram (40 mg/day for 21 days) did not affect the pharmacokinetics of digoxin (single dose of 1 mg). The serum levels of citalopram were slightly lower in the presence of digoxin but with no clinical relevance.</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>CT</td>
<td>Combined administration of racemic citalopram (40 mg single dose) and the potent CYP3A4 inhibitor ketoconazole (200 mg single dose) decreased the C_{max} of ketoconazole by 21% and did not affect the pharmacokinetics of racemic citalopram.</td>
<td></td>
</tr>
<tr>
<td>Levomepromazine</td>
<td>CT</td>
<td>Co-administration of racemic citalopram (40 mg/day for 10 days) and a CYP2D6 inhibitor, levomepromazine (single dose of 50 mg) did not affect the pharmacokinetics of either drug.</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>CT</td>
<td>Co-administration of racemic citalopram (40 mg/day for 10 days) and lithium (30 mmol/day for 5 days) did not affect the pharmacokinetics of either drug.</td>
<td>Since lithium may increase serotonergic neurotransmission, concomitant treatment with escitalopram should be undertaken with caution.</td>
</tr>
<tr>
<td>Racemic citalopram</td>
<td>Reference</td>
<td>Effect</td>
<td>Clinical Comment</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>Pimozide</td>
<td>CT</td>
<td>In a double-blind crossover study in healthy young adults, a single dose of pimozide 2 mg co-administered with racemic citalopram 40 mg given once daily for 11 days was associated with a mean increase in QTc values at T<sub>max</sub> of approximately 12 msec compared to pimozide when given with placebo.</td>
<td>The mechanism of this apparent pharmacodynamic interaction is not known. Concomitant use of citalopram or escitalopram and pimozide is contraindicated.</td>
</tr>
<tr>
<td>Theophylline</td>
<td>CT</td>
<td>Co-administration of racemic citalopram (40 mg/day for 21 days) with the CYP1A2 substrate theophylline (single dose of 300 mg) did not affect the pharmacokinetics of theophylline.</td>
<td></td>
</tr>
<tr>
<td>Triazolam</td>
<td>CT</td>
<td>Combined administration of racemic citalopram (titrated to 40 mg/day for 28 days) and the CYP3A4 substrate triazolam (single dose of 0.25 mg) did not significantly affect the pharmacokinetics of either drug.</td>
<td></td>
</tr>
<tr>
<td>Warfarin</td>
<td>CT</td>
<td>Administration of racemic citalopram (40 mg/day for 21 days) did not affect either the pharmacokinetics or the pharmacodynamics (prothrombin time) of a single 25 mg dose of warfarin, a CYP3A4 and CYP2C9 substrate.</td>
<td></td>
</tr>
</tbody>
</table>

Legend: CT Clinical Trial

DRUG-FOOD INTERACTIONS

Various scientific publications have acknowledged that the main components in grapefruit juice may act as CYP3A4 inhibitors. Escitalopram is also metabolized by other isoenzymes not affected by grapefruit juice, namely CYP2C19 and CYP2D6. Although there is a theoretical possibility of pharmacokinetic drug interactions resulting from co-administration of escitalopram with grapefruit juice, the onset of an interaction is considered unlikely.

DRUG-HERB INTERACTIONS

St-John’s Wort: In common with other SSRIs and newer antidepressants, pharmacodynamic interactions between escitalopram and the herbal remedy St-John’s Wort may occur and may result in undesirable side effects.

DRUG-LABORATORY TEST INTERACTIONS

Interactions with laboratory test have not been established.
DOSAGE AND ADMINISTRATION

DOsing consideration

- **General:** Mylan-Escitalopram should be administered as a single oral daily dose, with or without food.
- **Mylan-Escitalopram is not indicated for use in children under 18 years of age (see WARNINGS AND PRECAUTIONS, Potential Association with Behavioral and Emotional Changes, Including Self-Harm).**

RecommendEd doSe and dosage Adjustment

Adults

Major depressive disorder
Mylan-Escitalopram should be administered as a single oral dose of 10 mg daily. Depending on individual patient response, an increase in the dose to a maximum of 20 mg daily should be considered. Where initial sensitivity to adverse events may be a concern, Mylan-Escitalopram could be started at 5 mg daily and titrated upwards as tolerated.

Obsessive compulsive disorder
Mylan-Escitalopram should be administered as a single oral dose of 10 mg daily. Depending on individual patient response, an increase in the dose to a maximum of 20 mg daily should be considered. Where initial sensitivity to adverse events may be a concern, Mylan-Escitalopram could be started at 5 mg daily and titrated upwards as tolerated. During long-term therapy, the dosage should be maintained at the lowest effective level and patients should be periodically reassessed to determine the need to continue treatment.

Treatment of pregnant women
The safety of escitalopram oxalate during pregnancy has not been established. Therefore, Mylan-Escitalopram should not be used during pregnancy, unless, in the opinion of the physician, the expected benefits to the patient markedly outweigh the possible risk to the fetus.

Post-marketing reports indicate that some neonates exposed to SSRIs such as escitalopram oxalate and other newer antidepressants late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding (see WARNINGS AND PRECAUTIONS). When treating pregnant women with Mylan-Escitalopram during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. The physician may consider tapering Mylan-Escitalopram in the third trimester.

Elderly patients
A longer half-life and decreased clearance have been demonstrated in the elderly. Initial dosage is 5 mg once daily. Depending on individual response and tolerance the dose may be increased to 10 mg daily.
RENAL IMPAIRMENT
No dosage adjustment is necessary for patients with mild or moderate renal impairment. Since no information is available on the pharmacokinetic or pharmacodynamic effects of either escitalopram or racemic citalopram in patients with severely reduced renal function (creatinine clearance <30 mL/min), Mylan-Escitalopram should be used with caution in these patients.

HEPATIC IMPAIRMENT
Dosages should be restricted to the lower end of the dose range in patients with mild to moderate hepatic insufficiency. Accordingly, an initial single oral dose of 5 mg daily is recommended. Subsequently, the dose may be increased based on the patient’s response and clinical judgement. A daily dose of 10 mg is the recommended maximum dose for most patients with hepatic impairment. No information is available about the pharmacokinetics of escitalopram oxalate in patients with severe hepatic impairment (Child-Pugh Criteria C). Mylan-Escitalopram should be used with additional caution in patients with severe hepatic impairment.

CYP2C19 POOR METABOLIZERS
The metabolism of escitalopram oxalate is mainly mediated by CYP2C19. For patients who are known to be poor metabolizers with respect to CYP2C19, an initial dose of 5 mg daily is recommended. Depending on the individual response, the dose may be increased to a maximum of 10 mg.

LONG-TERM TREATMENT
During long-term therapy, the dosage should be maintained at the lowest effective level and patients should be periodically reassessed to determine the need to continue treatment.

SWITCHING PATIENTS TO OR FROM A MONOAMINE OXIDASE INHIBITOR (MAOI)
At least 14 days should elapse between discontinuation of a MAOI and initiation of therapy with Mylan-Escitalopram. Similarly, at least 14 days should be allowed after stopping Mylan-Escitalopram before starting a MAOI (see CONTRAINDICATIONS).

DISCONTINUATION OF ESCITALOPRAM TREATMENT
Symptoms associated with the discontinuation or dosage reduction of escitalopram have been reported. Patients should be monitored for these and other symptoms when discontinuing treatment or during dosage reduction (see WARNINGS AND PRECAUTIONS and ADVERSE REACTIONS).

A gradual reduction in the dose over several weeks rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, dose titration should be managed on the basis of the patient’s clinical response (see WARNINGS AND PRECAUTIONS and ADVERSE REACTIONS).

CHILDREN
See Potential Association with Behavioural and Emotional Changes, Including Self-Harm under WARNINGS AND PRECAUTIONS.
MISSED DOSE

In the event that a dose is missed, the patient should take the next dose when it is due.

OVERDOSAGE

For management of a suspected drug overdose, contact your Regional Poison Control Centre immediately.

Clinical data on escitalopram overdose are limited and many cases involve concomitant overdoses of other drugs. In the majority of cases mild or no symptoms have been reported. Fatal cases of escitalopram overdose have rarely been reported with escitalopram alone (doses unknown); the majority of cases have involved multiple drug overdose. Doses up to 800 mg of escitalopram alone have been taken without any severe symptoms.

In clinical trials with racemic citalopram, there were no reports of fatal citalopram overdoses of up to 2000 mg. Post-marketing reports of drug overdoses involving racemic citalopram have included fatalities with citalopram alone. In many cases, details regarding the precise dose of racemic citalopram or combination with other drugs and/or alcohol are often lacking. However, three fatalities with known overdoses of racemic citalopram alone have been reported in the literature (doses of 2800 mg, 2880 mg, and 3920 mg), although survival has also been reported with overdoses of up to 5200 mg.

In comparing the data from racemic citalopram with that of escitalopram, it is important to be aware that the latter product is expected to have similar pharmacodynamic effects at a lower dose of the racemic product.

Fatal cases of serotonin syndrome have been reported in patients who took overdoses of moclobemide (Manerix®) and racemic citalopram. The plasma concentrations of moclobemide were between 16 and 90 mg/L (therapeutic range: 1 to 3 mg/L) and those of racemic citalopram between 0.3 and 1.7 mg/mL (therapeutic concentration: 0.3 mg/L). This indicates that a relatively low dose of citalopram, given with an overdose of moclobemide represents a serious risk for the patient.

Symptoms most often accompanying overdose of racemic citalopram included dizziness, sweating, nausea, vomiting, tremor, seizure and somnolence. In more rare cases, observed symptoms included confusion, loss of consciousness, convulsions, coma, sinus tachycardia, cyanosis, hyperventilation and rhabdomyolysis and ECG changes (including QTc prolongation, nodal rhythm, ventricular arrhythmia, and one possible case of Torsades de pointes).
MANAGEMENT OF OVERDOSE
As with racemic citalopram, there is no specific antidote to escitalopram. Treatment is symptomatic and supportive. Establish and maintain an airway to ensure adequate ventilation and oxygenation. Gastric lavage and use of activated charcoal should be considered as soon as possible after oral ingestion. Electrocardiogram and vital sign monitoring are recommended, along with general symptomatic and supportive measures.

Due to the large volume of distribution of escitalopram, forced diuresis, dialysis, haemoperfusion and exchange transfusion are unlikely to be of benefit.

In managing overdosage, the possibility of multiple drug involvement must be considered.

ACTION AND CLINICAL PHARMACOLOGY

Escitalopram (S-citalopram) is the active enantiomer of the racemic drug citalopram. In vitro and in vivo studies have suggested that escitalopram is a highly potent and selective serotonin reuptake inhibitor (SSRI), which acts by specific competitive inhibition of the membrane transporter of serotonin (5-hydroxytryptophan, 5-HT). In addition to its high affinity to the primary binding site, escitalopram also binds with a 1000 fold lower affinity to a secondary binding site on the serotonin transporter. The clinical significance of this binding has not been established.

Escitalopram has no or very low affinity for a series of receptors including 5-HT\textsubscript{1A}, 5-HT\textsubscript{2}, dopamine D\textsubscript{1} and D\textsubscript{2} receptors, α\textsubscript{1}, α\textsubscript{2}, β- adrenoreceptors, histamine H\textsubscript{1}, muscarinic cholinergic, benzodiazepine, gamma aminobutyric acid (GABA) and opioid receptors. Escitalopram does not bind to, or has low affinity for various ion channels including Na+, Cl−, K+ and Ca2+ channels.

PHARMACOKINETICS
The single and multiple-dose pharmacokinetics of escitalopram are linear and dose-proportional in a dose range of 10 to 30 mg/day. Biotransformation of escitalopram is mainly hepatic with a mean terminal half-life of about 27-32 hours. With once daily dosing, steady-state plasma levels are achieved within approximately 1 week. At steady state, the plasma concentration of escitalopram in young healthy subjects was approximately 2.6 times that observed after a single dose.

ABSORPTION AND DISTRIBUTION: Following the administration of an oral dose (10 mg or 20 mg) of escitalopram to healthy volunteers, peak plasma levels occur at about 4 hours after dosing. Absorption of escitalopram is expected to be almost complete after oral administration and is not affected by food. After a single oral administration of escitalopram 10 mg, the apparent volume of distribution of (Vd,β,F) is about 12 L/kg to 26 L/kg. The binding of escitalopram to human plasma proteins is independent of drug plasma levels and average 55%.
METABOLISM AND ELIMINATION: The plasma clearance following oral administration is about 0.6 L/min with approximately 7% due to renal clearance. Escitalopram is metabolized in the liver to S-demethylcitalopram (S-DCT) and to S-didemethylcitalopram (S-DDCT). In humans, unchanged escitalopram is the predominant compound in plasma. After multiple-dose administration of escitalopram, the mean plasma concentrations of the metabolites S-DCT and S-DDCT are usually 28-31% and <5% of the parent compound concentration, respectively. Results from in vitro studies suggest that the metabolites (S-DCT and S-DDCT) do not contribute significantly to the clinical actions of escitalopram.

In vitro studies using human liver microsomes indicated that the biotransformation of escitalopram to its demethylated metabolites depends primarily on CYP2C19 and CYP3A4 with a smaller contribution from CYP2D6. The apparent hepatic clearance of drug amounts to approximately 90% of the administered dose. Following oral administration of escitalopram, the fraction of drug recovered as escitalopram and the metabolite S-DCT is about 8% and 10% respectively.

CARDIAC SAFETY: See POST-MARKET ADVERSE DRUG REACTIONS/Cardiac Disorders.

SPECIAL POPULATIONS

Elderly patients: Escitalopram pharmacokinetics in subjects older than 65 years of age was compared to younger subjects in a single/multiple-dose study (n=18 subjects ≥ 65). After a single dose, plasma escitalopram levels were similar in young and elderly subjects. At steady state in elderly subjects, escitalopram Cmax, AUC and half-life values were increased by approximately 35, 50 and 50%, respectively, while the clearance values were decreased. In this population, lower doses and a lower maximum dose of Mylan-Escitalopram are recommended (see WARNINGS AND PRECAUTIONS and DOSAGE AND ADMINISTRATION).

Gender: In a multiple dose study of escitalopram oxalate (10 mg/day for 3 weeks) in 18 male (9 elderly and 9 young) and 18 female (9 elderly and 9 young) subjects, there were no differences in the weight-adjusted values of the area under the curve (AUC), Cmax, and half-life between the male and the female subjects. No adjustment in dosage is recommended on the basis of gender difference.

Reduced Hepatic Function: In patients with mild to moderate hepatic impairment (Child-Pugh Criteria A and B), the half-life of escitalopram was approximately doubled (66 hours vs. 36 hours), and the exposure was about two-third higher than in subjects with normal liver function. Consequently, the doses in the lower end of the recommended range of escitalopram oxalate should be used for patients with hepatic dysfunction. No information is available about the pharmacokinetics of escitalopram in patients with severe hepatic impairment (Child-Pugh Criteria C). Mylan-Escitalopram should be used with additional caution in patients with severe hepatic impairment (see WARNINGS AND PRECAUTIONS and DOSAGE AND ADMINISTRATION).
Reduced Renal Function: No information is available about the pharmacokinetics of escitalopram in patients with reduced renal function. In n=7 patients with mild to moderate renal function impairment, oral clearance of racemic citalopram was reduced by 17% compared to normal subjects, with no clinically significant effect on the kinetics. No adjustment of dosage is recommended for such patients. At present no information is available about the pharmacokinetics of either escitalopram or racemic citalopram for the chronic treatment of patients with severely reduced renal function (creatinine clearance < 30 mL/min) (see **WARNINGS AND PRECAUTIONS** and **DOSAGE AND ADMINISTRATION**).

STORAGE AND STABILITY

Mylan-Escitalopram tablets should be stored in a dry place at room temperature (between 15°C and 30°C).

Keep out of the reach of children.

DOSAGE FORMS, COMPOSITION AND PACKAGING

Mylan-Escitalopram tablets contain escitalopram oxalate corresponding to 10 mg or 20 mg escitalopram, and the following non medicinal ingredients: colloidal silicon dioxide, croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, purified talc, titanium dioxide.

AVAILABILITY OF DOSAGE FORMS

10 mg tablets: Each white to off-white film-coated, oblong normal convex tablet debossed ‘EC’ scoreline ‘10’ on one side and ‘G’ on the other contains 10 mg escitalopram (as escitalopram oxalate). Bottles of 100 tablets, 500 tablets and blisters of 10 tablets (cartons of 30 tablets).

20 mg tablets: Each white to off-white film-coated, oblong normal convex tablet debossed ‘EC’ scoreline ‘20’ on one side and ‘G’ on the other contains 20 mg escitalopram (as escitalopram oxalate). Bottles of 100 tablets and blisters of 10 tablets (cartons of 30 tablets).
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substance

Common Name: Escitalopram oxalate
Chemical Name: S(+) -1-[3-(Dimethylamino)propyl]-1-(p-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitril, oxalate

Molecular Formulas: $\text{C}_{20}\text{H}_{21}\text{FN}_2\text{O} \cdot \text{C}_2\text{H}_2\text{O}_4$

Structural Formula:

![Structural Formula of Escitalopram Oxalate]

Molecular Weight: 414.4

Description: A white to almost white crystalline powder.

Melting Point: 149°-156°C.

pH: pH value (1.0% w/w solution in water) is between 2.5 and 3.5.

pKa: pKa value is 4.005.

Solubility: Freely soluble in methanol

Chirality: It is an optically active compound with (+) rotation value.
CLINICAL TRIALS

Comparative Bioavailability Study

A randomized, 2-way crossover bioequivalence study of Mylan-Escitalopram 20 mg tablets and Cipralex® (escitalopram oxalate) 20 mg tablets was conducted in 12 normal, healthy male and female subjects under fasting conditions.

A summary of the comparative bioavailability data is presented below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST* Mylan-Escitalopram</th>
<th>REFERENCE† Cipralex®</th>
<th>% Ratio of Geometric Means#</th>
<th>90% Confidence Interval#</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC(_{0-72h}) (ng·h/mL)</td>
<td>813.15 886.47 (41.80)</td>
<td>824.42 910.50 (42.97)</td>
<td>98.63</td>
<td>94.19 - 103.28</td>
</tr>
<tr>
<td>AUC(_{\text{inf}}) (ng·h/mL)</td>
<td>981.29 1111.50 (49.38)</td>
<td>1001.01 1146.28 (48.97)</td>
<td>98.03</td>
<td>92.71 - 103.66</td>
</tr>
<tr>
<td>(C_{\text{max}}) (ng/mL)</td>
<td>30.03 32.47 (39.88)</td>
<td>31.54 32.29 (29.48)</td>
<td>95.23</td>
<td>87.17-104.05</td>
</tr>
<tr>
<td>(T_{\text{max}})§ (h)</td>
<td>3.96 (30.21)</td>
<td>3.50 (41.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\frac{1}{2}})§ (h)</td>
<td>28.72 (25.03)</td>
<td>29.32 (27.65)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mylan-Escitalopram (escitalopram oxalate), 20 mg tablet, Mylan Pharmaceuticals ULC, Canada.
† Cipralex® (escitalopram oxalate), 20 mg tablet, Lundbeck Canada Inc., Canada, purchased in Canada.
§ Expressed as either the arithmetic mean (CV%) only.
Based on least-squares mean estimates.

MAJOR DEPRESSIVE DISORDER (MDD)

The efficacy of escitalopram oxalate in the treatment of depression was established in three 8-week placebo-controlled, parallel groups, multi-centre studies in patients who met the DSM-IV criteria for major depression. Two of the studies included racemic citalopram as a treatment arm. The primary efficacy endpoint in all 3 studies was mean change from baseline to 8-week endpoint on the Montgomery Asberg Depression Rating Scale (MADRS), adjusted for effects of baseline score, treatment and centre. All three studies consisted of a 1-week single-blind placebo lead-in period, followed by an 8-week, double-blind treatment period.
ESCITALOPRAM FIXED-DOSE STUDIES

Study 1
A total of 377 primary care patients with major depressive disorder were treated with 10 mg/day escitalopram oxalate (N=188) or placebo (N=189). The 10 mg/day escitalopram oxalate treatment group showed significantly greater improvement than placebo on the adjusted MADRS mean change from baseline to 8-week endpoint (-16.3 vs. -13.6, respectively).

Study 2
In another study, a total of 485 outpatients with major depressive disorder were treated with 10 mg escitalopram oxalate (N=118), 20 mg escitalopram oxalate (N=123), 40 mg racemic citalopram (N=125), or placebo (N=119) for 8 weeks. Both the 10 mg and 20 mg escitalopram oxalate treatment groups showed significantly greater improvement than placebo on the MADRS mean change from baseline to 8-week endpoint (-12.8 and -13.9 vs. -9.4, respectively).

ESCITALOPRAM FLEXIBLE-DOSE STUDY

Study 3
A total of 468 primary care patients with major depressive disorder were treated with 10-20 mg escitalopram oxalate (N=155), 20-40 mg racemic citalopram (N=159), or placebo (N=154) for 8 weeks. During the first four weeks of active treatment, all doses were fixed at 10 mg escitalopram oxalate or 20 mg racemic citalopram. A dose increase to 20 mg and 40 mg, respectively, was permitted from Week 4 onward. The escitalopram oxalate 10-20 mg treatment group showed significantly greater improvement than placebo on the adjusted MADRS mean change from baseline to 8-week end-point (-15.0 vs. -12.11, respectively).

ESCITALOPRAM LONGER TERM RELAPSE OBSERVATION STUDY

The efficacy of escitalopram oxalate in maintaining an antidepressant response in patients with major depressive disorder was demonstrated in a longer term study consisting of a 36-week placebo controlled relapse observation phase in responders of a preceding 8 week acute treatment phase. In a longer term trial, 274 patients meeting (DSM-IV) criteria for major depressive disorder, who had responded during an initial 8-week, open-label treatment phase with escitalopram oxalate 10 or 20 mg/day, were randomized to continuation of escitalopram oxalate at their same dose, or to placebo, for up to 36 weeks of observation for relapse. Response during the open-label phase was defined by having a decrease of the MADRS total score to ≤ 12. Relapse during the double-blind phase was defined as an increase of the MADRS total score to ≥ 22, or discontinuation due to insufficient clinical response. Patients receiving continued escitalopram experienced a significantly longer time to relapse over the subsequent 36 weeks compared to those receiving placebo.
OBSESSIVE COMPULSIVE DISORDER (OCD)

Study 4
The efficacy of escitalopram oxalate in the treatment of Obsessive-Compulsive Disorder (OCD) was established in a multicenter 24-week placebo-controlled fixed-dose study (with efficacy assessments at Week 12 and Week 24) that compared the efficacy of 10 mg/day or 20 mg/day escitalopram oxalate with placebo in outpatients between 18 and 67 years of age who met the DSM-IV-TR criteria for OCD. An SSRI currently indicated for the treatment of OCD was included in the study as an active control. The primary efficacy endpoint was mean change from baseline to 12-week on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) total score. A total of 455 outpatients with OCD were treated with 10 mg escitalopram oxalate (n=112), 20 mg escitalopram oxalate (n=114), SSRI (n=116) or placebo (n=113). At 12 weeks, escitalopram oxalate 20 mg/day and the active control SSRI showed significantly greater improvement than placebo (p=0.002 and p=0.014, respectively) on the mean change from baseline in the Y-BOCS total score (LOCF). Improvement in the 10 mg/day group was numerically, but not statistically, superior to the placebo group (p=0.052). The mean treatment differences relative to placebo were -1.97 and -3.21 for escitalopram oxalate 10 mg/day and 20 mg/day, respectively and -2.47 for the active control SSRI.

Secondary efficacy outcomes were supportive of the primary efficacy outcome. At Week 12 there were improvements in the CGI-Improvement (CGI-I) responder rate and the Sheehan Disability Scale functional impairment scores (social life, family life and work) with escitalopram oxalate and active SSRI control compared to placebo.

Study 5
The efficacy of escitalopram oxalate in maintaining an anti-obsessive response in patients with OCD was demonstrated in a long-term study in which 322 patients meeting the DSM-IV-TR criteria for OCD, who had responded during an initial 16-week, open-label treatment phase with escitalopram oxalate (10 or 20 mg/day), were randomized to continuation of escitalopram oxalate at their same dose, or to placebo, for 24 weeks.

Response during the open-label phase was defined by having a ≥25% reduction from baseline in Y-BOCS total score. Non-responders left the study.

Relapse during the double-blind phase was defined as either an increase from randomization to any single visit in Y-BOCS total score of 5 points or more or an unsatisfactory treatment effect, as judged by the investigator. Patients who relapsed were withdrawn from the study. There were statistically significantly (p≤0.001) more relapses on placebo (52%) than on escitalopram oxalate (23%).

Secondary efficacy outcomes were supportive of the primary efficacy outcome. There were improvements in Clinical Global Impression of Improvement (CGI-I) total score and the

1 For the CGI-Improvement, response in the OCD studies was defined as “much improved” or “very much improved”.

Sheehan Disability Scale functional impairment scores (social life, family life and work) with escitalopram oxalate compared to placebo.

DETAILED PHARMACOLOGY

Escitalopram is the S (+) enantiomer of citalopram. At clinically relevant doses, the pharmacological activity of the racemic citalopram is mediated through the S (+) enantiomer. Tolerance to the inhibition of serotonin reuptake is not induced by long-term (up to 5 weeks) treatment of rats with escitalopram. No complete conventional battery of preclinical studies was performed with escitalopram since the bridging toxicokinetic and toxicological studies conducted on rats with escitalopram and racemic citalopram showed a similar profile. The pharmacodynamic and pharmacokinetic properties of escitalopram are shown to parallel those of the racemate citalopram.

ANIMAL DATA

IN VITRO EXPERIMENTS

Neuronal reuptake of serotonin, norepinephrine and dopamine

Escitalopram selectively blocks the reuptake of 3H-5-HT in rat brain synaptosomes *in vitro* with an IC$_{50}$ value of 2.1 nM compared to 275 nM for the R-enantiomer and 3.9 nM for racemic citalopram. As suggested by these inhibitory potencies, escitalopram is expected to be two-fold more potent than racemic citalopram, the R-enantiomer being several fold less potent.

The effects of racemic citalopram, the S- and R-enantiomers and the corresponding demethylated metabolites (DCT, S-DCT and R-DCT, respectively) on accumulation of 3H-5-HT into rat whole brain synaptosomes, 3H-dopamine (DA) into rat striatal synaptosomes, and 3H-norepinephrine (NE) into rat frontal and temporal cortices were compared.

The results show that escitalopram and racemic citalopram are both potent and selective 5-HT reuptake inhibitors with no effect on the reuptake of NE and DA. Although the N-demethylated DCT metabolites of escitalopram and racemic citalopram are also selective inhibitors of the 5-HT reuptake, they are significantly less potent than the parent compounds. The didemethylated metabolites (DDCT) were devoid of 5-HT inhibitory potency.

Defining selectivity as the ratio between NE and 5-HT reuptake inhibitory potency, escitalopram is considered to be the most selective serotonin reuptake inhibitor that has been developed for clinical use (NE/5-HT uptake of escitalopram vs. racemic citalopram = 1700 vs. 3400).

Effect of neurotransmitter receptors

Escitalopram has no or very low affinity for a series of receptors including 5-HT$_{1A}$, 5-HT$_{2}$, dopamine D$_1$ and D$_2$ receptors, α_1, α_2, β-adrenoreceptors, histamine H$_1$, muscarinic cholinergic, benzodiazepine, and opioid receptors; nor has it an action on MAO except at extremely high concentrations achievable only *in vitro*.
BEHAVIOURAL EFFECTS
Escitalopram has shown efficacy in several animal models predictive of antidepressant activities. Effects of escitalopram, racemic citalopram and R-citalopram in male mice were studied in the forced swim test. Escitalopram as well as citalopram dose-dependently reversed immobility induced by forced swimming, whereas R-citalopram was inactive.

The 5-HT precursors tryptophan, d,l-5-HTP and l-5HTP induce in mice a characteristic 5-HT syndrome (tremor, hyperactivity and abduction of the hind limbs). Individual behavioral changes are scored for each animal resulting in a total score that corresponds to a complete 5-HT syndrome. Concomitant acute treatment with a 5-HT reuptake inhibitor potentiates the behavioral response to the precursors. Table 9 below shows relative potencies (ED₅₀) of escitalopram, racemic citalopram and corresponding metabolites.

Table 9. Potentiation of 5-HTP-induced behavioral changes in mice. Effects of racemic citalopram and S- and R-enantiomers and the corresponding demethylated metabolites.

<table>
<thead>
<tr>
<th></th>
<th>ESC</th>
<th>R-CIT</th>
<th>CIT</th>
<th>S-DCT</th>
<th>R-DCT</th>
<th>DCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HTP potentiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice, 30 min, SC</td>
<td>1.1</td>
<td>59</td>
<td>3.3</td>
<td>>50</td>
<td>>50</td>
<td>NT</td>
</tr>
<tr>
<td>l-5-HTP potentiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice, 30 min, SC</td>
<td>1.7</td>
<td>>48</td>
<td>1.8</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>5-HT syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice, 30 min, SC</td>
<td>>6.0</td>
<td>>190</td>
<td>>49</td>
<td>>50</td>
<td>>50</td>
<td>NT</td>
</tr>
</tbody>
</table>

CARdiovascular STUDIES

Patch clamp experiments showed that escitalopram and racemic citalopram had some inhibitory effect on I_k_r and I_{Na} channels, and on cardiac L-type calcium currents, but only at concentrations in the micromolar range.

The electrophysiological effects of escitalopram, S-DDCT, R-DDCT, racemic citalopram, DDCT and other SSRIs have been examined in the Langendorff guinea pig heart model. From 0.5-2.5 μM all SSRIs caused an increase in the PQ interval, accompanied by negative inotropic activity. None of the SSRIs tested nor S-DDCT had an effect on the QT interval, whereas R-DDCT and DDCT did prolong it at the highest concentrations of 2.5 μM.

Doses of escitalopram of 1, 3 or 6 mg/kg were infused i.v. over 2 hours into conscious dogs. The serum levels reached at the end of the infusion did not induce convulsive attacks. Even the highest dose of escitalopram (corresponding to 15-21 times the C_{max} in human at a dose of 20 mg/day) was associated with a minor variation in the PR interval, which was considered to be within the physiological limits. The QT interval was not affected. There was no particular action
on the ECG apart from some changes in the morphology of the precordial T waves, which has been seen with many other CNS drugs.

RESPIRATORY STUDIES

Escitalopram caused moderate acidosis (blood pH fell from about 7.34 to 7.21) in conscious dogs following intravenous administration. An intravenous dose of racemic citalopram decreases arterial blood pH by approximately 0.07. Escitalopram does not affect the respiratory rate in dogs.

PHARMACOKINETICS AND METABOLISM IN ANIMAL MODELS

Animal models have shown that the pharmacokinetics and metabolism of escitalopram does not depend on whether it is given on its own or together with the R-enantiomer in the racemate. In addition, results of studies carried out *in vitro* and *in vivo* show lack of inter-conversion between the two enantiomers. It is considered appropriate, therefore, to combine the kinetics and other information about escitalopram when given on its own with the other knowledge available of the body’s handling and responses to the racemic citalopram.

ABSORPTION

Escitalopram appears to be readily absorbed. Similar to racemic citalopram, the kinetics of escitalopram in rats and dogs are characterized by rapid absorption, with T_{max} ranging from approximately 0.5-2 hours with difference due to species-specific first pass metabolism. Higher serum concentrations of R-citalopram were seen in both humans and rats after administration of racemic citalopram compared to escitalopram. Comparisons between studies indicate a high absolute bioavailability.

DISTRIBUTION

The lipophilicity of escitalopram is assumed to be a major determinant of its distribution pattern in tissues. Based on previous results on the distribution of racemic citalopram, it is assumed that escitalopram will follow two-compartment distribution characteristics. High levels of racemic citalopram and demethylated metabolites were generally found in the lungs, liver, and kidneys, and lower levels in the heart and brain. The apparent volume of distribution for racemic citalopram was approximately 10 to 25 L/kg. Similarly, the apparent volume of distribution ($V_{d,p}/F$) of escitalopram after oral administration to human is about 12 to 26 L/kg. Racemic citalopram and the metabolites were shown to pass the placental barrier and were excreted in small amounts in milk of lactating mice.

The plasma protein binding of escitalopram is low with an average of 55%, compared to an average of 75% for racemic citalopram. Both in mice and dogs, tissue concentrations of parent racemic citalopram as well as those of the demethylated metabolites increased with increasing doses, although not necessarily in a dose-related manner. Levels of the didemethylated
metabolites were higher in dogs than in mice in relation to the parent drug, resulting in smaller citalopram/didemethylcitalopram ratios in the dog, particularly in the heart and kidneys.

METABOLISM

As with racemic citalopram, the metabolism of escitalopram in animal species is assumed to be qualitatively the same as in humans. The demethylated metabolites of escitalopram (S-DCT, S-DDCT) have been measured in rats, dogs and humans. Escitalopram has been shown to be demethylated qualitatively by CYP3A4, 2C19 and 2D6. Escitalopram and S-DCT (main metabolite in humans and rats) are weak or negligible inhibitors of CYP1A2, 2C9, 2C19, 2E1, and 3A4. The metabolite S-DDCT (main metabolite in dogs) is a moderate inhibitor of CYP2C9 and 2C19. However, this is unlikely to be of clinical importance due to the low plasma levels of S-DDCT achieved clinically in humans. Alternatively, the nitrogen groups may be oxidized to form the N-oxide metabolite. The deamination leads to the propionic acid metabolite. Both parent and metabolites are partly excreted as glucuronides.

ELIMINATION

Following the administration of 14C-labelled citalopram by oral gavage to rats, maximum excretion in urine occurred at 2-8 hours and in faeces at 8-24 hours. At a dose of 20 mg/kg, approximately equal amounts of the dose were excreted in the urine and feces, with total recovery being about 80% of the dose. In the 4- and 13-week toxicity studies the apparent serum elimination half-life of escitalopram was generally short: about 0.8-5.5 hours in rats and about 4-8 hours in dogs. The apparent increase of the elimination half-life in the dog with increasing doses is presumably due to the saturation of the first-pass metabolism. This is consistent with the results obtained with racemic citalopram. Of the three compounds (escitalopram, S-DCT, S-DDCT), S-DDCT appears to have the longest elimination half-life (about 8-36 hours) in animals.

TOXICOKINETICS

The pharmaco-/toxicokinetics of escitalopram observed in the 4- and 13-week studies performed in the rat appeared comparable after administration of either escitalopram or racemic citalopram. Plasma levels were also determined in several toxicity studies. The table below summarizes the toxicokinetic parameters from a 13-week study in rats relative to pharmacokinetic parameters in humans.
<table>
<thead>
<tr>
<th>Study/ Species</th>
<th>Dose ESC (mg/kg/day) oral route</th>
<th>Gender</th>
<th>C<sub>max</sub> (nmol/L)</th>
<th>AUC<sub>0-t</sub> (h·nmol/L)</th>
<th>Ratio of AUC values animal/human</th>
<th>10 mg/day</th>
<th>20 mg/day<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C<sub>max</sub></td>
<td>AUC<sub>0-t</sub></td>
</tr>
<tr>
<td>ESCITALOPRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-week rats (day 90)</td>
<td>10</td>
<td>M</td>
<td>181</td>
<td>643</td>
<td>2.9x</td>
<td>0.6x</td>
<td>1.4x</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>1076</td>
<td>6552</td>
<td>17x</td>
<td>5.9x</td>
<td>8.2x</td>
</tr>
<tr>
<td></td>
<td>120<sup>1</sup></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>F</td>
<td>775</td>
<td>1199</td>
<td>12x</td>
<td>1.1x</td>
<td>5.9x</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>1383</td>
<td>9165</td>
<td>22x</td>
<td>8.3x</td>
<td>11x</td>
</tr>
<tr>
<td></td>
<td>120<sup>1</sup></td>
<td>2066</td>
<td>19609</td>
<td>33x</td>
<td>18x</td>
<td>16x</td>
<td>8.7x</td>
</tr>
<tr>
<td>multidose humans<sup>2</sup> (day 24)</td>
<td>10 mg/day</td>
<td>both</td>
<td>63</td>
<td>1109</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20 mg/day<sup>3</sup></td>
<td></td>
<td>131</td>
<td>2250</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-DDCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-week rats (day 90)</td>
<td>10</td>
<td>M</td>
<td>305</td>
<td>1094</td>
<td>13x</td>
<td>2.2x</td>
<td>6.9x</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>1383</td>
<td>17843</td>
<td>58x</td>
<td>36x</td>
<td>31x</td>
</tr>
<tr>
<td></td>
<td>120<sup>1</sup></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>F</td>
<td>302</td>
<td>739</td>
<td>13x</td>
<td>1.5x</td>
<td>6.9x</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>734</td>
<td>10232</td>
<td>31x</td>
<td>21x</td>
<td>17x</td>
</tr>
<tr>
<td></td>
<td>120<sup>1</sup></td>
<td>1585</td>
<td>28668</td>
<td>66x</td>
<td>59x</td>
<td>36x</td>
<td>32x</td>
</tr>
<tr>
<td>multidose humans<sup>2</sup> (day 24)</td>
<td>10 mg/day</td>
<td>both</td>
<td>24</td>
<td>489</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20 mg/day<sup>3</sup></td>
<td></td>
<td>44</td>
<td>883</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-DDCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-week rats (day 90)</td>
<td>10</td>
<td>M</td>
<td>48</td>
<td>367</td>
<td>16x</td>
<td>6.1x</td>
<td>13x</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>316</td>
<td>5123</td>
<td>105x</td>
<td>85x</td>
<td>85x</td>
</tr>
<tr>
<td></td>
<td>120<sup>1</sup></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>F</td>
<td>38</td>
<td>315</td>
<td>13x</td>
<td>5.3x</td>
<td>10x</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>149</td>
<td>2510</td>
<td>50x</td>
<td>42x</td>
<td>40x</td>
</tr>
<tr>
<td></td>
<td>120<sup>1</sup></td>
<td>395</td>
<td>8535</td>
<td>132x</td>
<td>142x</td>
<td>107x</td>
<td>115x</td>
</tr>
<tr>
<td>multidose humans<sup>2</sup> (day 24)</td>
<td>10 mg/day</td>
<td>both</td>
<td>3.0</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20 mg/day<sup>3</sup></td>
<td></td>
<td>3.7</td>
<td>74</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹The 120 mg/kg/day dose was reduced to 100 mg/kg/day for males on day 13 and further for both genders to 80 mg/kg/day during week 6.

²n=17 (10 mg) or n=16 (30 mg)

³The 20 mg/day dose is estimated from the mean of the 10 and 30 mg/day results.

Numbers in italics refer to the NOEL (40 mg/kg/day) with respect to cardiac effects.

n.d.: not determined
Exposure margins of approximately up to 10 times the maximum therapeutic dose for the parent drug and up to about 30-140 times for the metabolites have been produced in the various toxicity tests of escitalopram. The data indicate that the rat resembles man most closely in its metabolism. The R/S ratio in rats for citalopram and the metabolites, DCT and DDCT, is comparable to that found in humans. However, there are some quantitative differences in the pharmacokinetics and metabolism of citalopram and escitalopram in man and animals. The most important is the lesser degree of first pass metabolism in humans relative to animals, which results in proportionately lower circulating levels of S-DCT and S-DDCT in humans.

TOXICOLOGY

The studies on escitalopram were performed in one species, the rat. This species was considered the most appropriate as it has a R/S ratio for citalopram and the metabolites, DCT and DDCT, that is comparable to that found in humans. In addition, the rat has been used as an animal model to demonstrate enantiomeric stereoselectivity for SSRI pharmacological action.

Significant findings from toxicological studies with racemic citalopram in rats, mice and dogs are also described in this section.

ACUTE TOXICITY

After gavage administration, escitalopram 500 mg/kg caused deaths, prostration and tremors, 250 mg/kg had no effect. Citalopram also had no effect at 250 mg/kg, but 500 and 1000 mg/kg were both associated with some deaths and similar clinical signs.

Bolus IV injection of escitalopram at 22 mg/kg led to breathing difficulties within 30 minutes and 30 mg/kg caused convulsions and deaths. Citalopram had similar effects at those dose levels.

SUBCHRONIC AND REPEATED DOSE TOXICITY

Comparative 4- and 13-week and bridging oral tests have been conducted with escitalopram and racemic citalopram in the rat. A separate 60-day test was also carried out using the rat as a model.

In the 4-week experiment, the highest dose of both drugs (60 mg/kg/day) led to small retardation in weight gain, slight changes in liver function and phospholipidosis in various tissues. At a dose of 60 mg/kg/day, the signs of phospholipidosis were more marked in animals given racemic citalopram.

In the 13-week toxicity experiments in the rat, it was demonstrated that the pattern of toxic actions of escitalopram was similar to that of citalopram. Toxic actions mainly comprised hepatic enlargement and inflammation of the myocardium at high dose levels, plus typical phospholipidosis seen with many cationic amphophilic medicines. There were also clinical signs
including reduced weight gain, sedation and trembling. The NOEL was about 5-10 mg/kg/day for both compounds.

Cardiotoxicity, Including Inflammation and Congestive Heart Failure

In the bridging study both escitalopram (80 mg/kg/day) and citalopram (160 mg/kg/day) were found to induce cardiotoxicity in the rat under the conditions of the study, although a higher incidence of changes was recorded in animals treated with escitalopram (2 out of 20 animals vs. 3 out of 40 animals, respectively).

The changes induced by both compounds were initially and mainly inflammatory (myocarditis) affecting the myocardium and atria in particular, and included congestive heart failure.

Male and female rats dosed with escitalopram at the high doses are affected to the same extent by myocarditis, although onset of lesions appears to be more rapid in males than in females.

The cardiotoxicity seemed to correlate with peak plasma concentrations rather than to systemic exposures (AUC). Peak plasma concentrations at no-effect-levels were approximately 8-fold greater than those achieved in clinical use, whereas AUC for escitalopram was only 3-4 fold higher than the exposure achieved in clinical use. The findings may be secondary to the effect on biogenic amines, which results in reduction in coronary flow and potential ischemia. However, an exact mechanism of cardiotoxicity in rats is not clear. Clinical experience with racemic citalopram, and the clinical trials experience with escitalopram do not indicate that these findings have a clinical correlate.

Retinal Degeneration/Atrophy in Rats Given Racemic Citalopram

In the rat carcinogenicity study, a slight, dose-related increase in lens opacity was seen, affecting males only. In addition, increased incidence/severity of retinal degeneration/atrophy was seen in the high-dose group (80 mg/kg/day). The incidence was higher in females, however, more female than male rats survived the study. It was concluded by an independent pathologist that the retinal changes were most likely related to drug-induced pupillary dilatation (mydriasis), which increased the risk of retinal damage in the already light-sensitive albino rat.

Convulsions and Death in Dogs Given Racemic Citalopram

Toxicity studies in dogs revealed that citalopram administration led to fatal ventricular arrhythmias. Consequently, studies were undertaken to elucidate the mechanism of this effect and to determine its relevance to humans.

The studies have shown that (1) i.v. infusion of citalopram, at a dose of 20 mg/kg, led to convulsions. The blood levels of citalopram were 1950 ng/mL at this dose. In the presence of diazepam, also infused intravenously, higher doses of citalopram could be infused, namely up to 70 mg/kg (6800 ng/mL). (2) Intravenous infusion of the didemethyl metabolite of citalopram caused QT prolongation in a dose range of 5 to 22 mg/kg. The blood levels of the metabolite were 300 ng/mL at the 5 mg/kg dose. The QT prolongation was dose-dependent. (3) When
citalopram, 20 mg/kg, and didemethylcitalopram, 5 mg/kg, were infused concomitantly (in the presence of diazepam in order to prevent convulsions), 5 out of 9 dogs died due to ventricular fibrillation. At these doses, the plasma levels of citalopram and didemethylcitalopram were 1950 ng/mL and 300 ng/mL, respectively.

As shown in the table below, there is a substantial difference in the plasma levels of citalopram and its metabolite in dogs and in humans at the recommended therapeutic doses.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dog ventricular fibrillation</th>
<th>Patients at steady state after a 60 mg/day dose of citalopram</th>
</tr>
</thead>
<tbody>
<tr>
<td>citalopram, 20 mg/kg plus didemethylcitalopram, 5 mg/kg</td>
<td>1950 ng/mL</td>
<td>121 ng/mL</td>
</tr>
<tr>
<td></td>
<td>300 ng/mL</td>
<td>6.2 ng/mL</td>
</tr>
</tbody>
</table>

In summary the safety profile of escitalopram is similar to racemic citalopram, other than a higher incidence of cardiac inflammation at proportional doses. Further, the clinical use of escitalopram is supported by the extensive clinical safety experience with the SSRIs in general and racemic citalopram in particular.

The No Effect Level in rats is 40 mg/kg/day PO, excluding phospholipidosis as observed with many cationic amphiphilic medicines. At this dose level the C_{max} plasma levels of escitalopram in the rat during a 13-week study are 1076-1383 nM, i.e. approximately 8-11 fold the human exposure of 131 nM following repeated dosing at the maximum recommended dose of 20 mg/day.

REPRODUCTION TOXICITY

When racemic citalopram was administered orally to 16 male and 24 female rats prior to and throughout mating and gestation at doses of 16, 32, 48 and 72 mg/kg/day, mating was decreased at all doses and fertility was decreased at dose \geq 32 mg/kg/day. Gestation duration was increased at 48 mg/kg/day.

Tests of the maternal and foetal toxicity and the peri- and post-natal toxicity of escitalopram were performed in rats. One high dose of racemic citalopram was included for comparison.

In an embryo-fetal developmental toxicity study with escitalopram (56, 112 or 150 mg/kg/day and racemic citalopram (70 mg/kg/day) in female rats during the period of organogenesis embryo-foetal effects (reduced foetal body weight and delays in ossification) were found only at doses \geq112 mg/kg/day (approximately \geq56 times the maximum recommended human dose of 20 mg/day escitalopram on a body surface area [mg/m2] basis). Similar effects were seen with racemic citalopram. These doses were also associated with maternal toxicity.
In a previous separate embryo-foetal developmental toxicity study with racemic citalopram embryo-fetal effects in terms of decreased foetal growth and survival, an increased incidence of foetal abnormalities (including cardiovascular and skeletal defects, and delays in ossification) were noted at 112 mg/kg/day (approximately 18 times the maximum recommended human dose of 60 mg/day citalopram on a body surface area [mg/m²] basis).

In an embryo-foetal developmental toxicity study with racemic citalopram (0.8, 3.2 or 12.8 mg/kg/day in female rabbits during the period of organogenesis no effects on embryo-foetal development were noted. The NOEL for maternal toxicity was 3.2 mg/kg/day and 12.8 mg/kg/day for developmental toxicity.

When female rats were orally treated with escitalopram (6, 12, 24, or 48 mg/kg/day) or racemic citalopram (12 or 48 mg/kg/day) during pregnancy and through weaning, the high doses were associated with increased offspring mortality in the first 4 days and persistent offspring growth retardation at 48 mg/kg/day for both compounds. The NOEL for maternal and reproductive toxicity of citalopram was 12 mg/kg/day. The corresponding NOEL and NOAEL for escitalopram for reproductive and maternal effects were 24 mg/kg/day, which is approximately 12 times the maximum recommended human dose on a mg/m² basis.

MALE FERTILITY
Animal data have shown that some SSRIs induce a reduction of fertility index and pregnancy index, reduction in number in implantation and abnormal sperm at exposure well in excess of human exposure. Citalopram was further shown to be genotoxic to mouse germ cells at the recommended human doses after 4 weeks of chronic exposure, resulting in increased sperm DNA strand breaks, aberrant primary spermatocytes and oxidative DNA damage. No animal data related to this aspect are available for escitalopram.

MUTAGENIC POTENTIAL
An extensive battery of *in vitro* and *in vivo* tests of racemic citalopram has been conducted. Racemic citalopram did not show mutagenic activity in most of the *in vitro* tests (Ames Salmonella assay; chromosome aberration assay in cultured human lymphocytes; gene mutation assay in cultured mouse lymphoma L5178Y) and *in vivo* tests (micronucleus test; unscheduled DNA synthesis). However, racemic citalopram was mutagenic in the *in vitro* bacterial reverse mutation assay (Ames test) in 2 of 5 bacterial strains (Salmonella TA98 and TA1537) in the absence of metabolic activation. Racemic citalopram was clastogenic in the *in vitro* Chinese hamster lung cell assay, in the presence and absence of metabolic activation.
CARCINOGENICITY

Comprehensive carcinogenicity tests of racemic citalopram were done in the mouse and rat. Racemic citalopram showed no evidence of carcinogenic potential in the NMRI/BOM strain of mice at daily doses of 40-240 mg/kg (1.5 years) and in the COBS WI strain of rats at 8-80 mg/kg (2 years) other than an increased incidence of small intestine carcinoma in rats treated with 8 and 24 mg/kg/day of racemic citalopram. The latter doses are approximately equivalent to a dose of escitalopram 2-6 times the maximum recommended human daily dose based on mg/m² basis. No such effects were observed in rats treated with a 80 mg/kg/day dose. On the same grounds as used previously, it can be concluded that escitalopram is not carcinogenic.
REFERENCES

33. Lundbeck Canada Inc., Cipralex® Product Monograph, Control No. 192637, Date of Revision: June 9, 2016
PART III: CONSUMER INFORMATION

Escitalopram Oxalate Tablets
10 mg and 20 mg

This leaflet is part III of a three-part "Product Monograph" published when Mylan-Escitalopram was approved for sale in Canada and is designed specifically for Consumers. Please read this information before you start to take your medicine. Keep the leaflet while you are taking Mylan-Escitalopram as you may want to read it again. This leaflet is a summary and will not tell you everything about Mylan-Escitalopram. Contact your doctor or pharmacist if you have any questions about the drug. Always keep medicines out of the reach of children.

ABOUT THIS MEDICATION

What is the medication used for:
Mylan-Escitalopram has been prescribed to you by your doctor to relieve your symptoms of depression or obsessive compulsive disorder. Treatment with these types of medications is most safe and effective when you and your doctor have good communication about how you are feeling.

What it does:
Mylan-Escitalopram belongs to a group of medicines known as antidepressants, more specifically to the family of medicines called SSRIs (Selective Serotonin Reuptake Inhibitors).

Mylan-Escitalopram is thought to work by increasing the levels of a chemical in the brain called serotonin (5-hydroxytryptamine). Disturbances in the serotonin-system are considered an important factor in the development of depression and related diseases.

When it should not be used:
- Do not use Mylan-Escitalopram at the same time as pimozide.
- Do not use Mylan-Escitalopram if you are currently or have recently taken monoamine oxidase antidepressants (e.g. phenelzine sulphate, moclobemide).
- Do not take Mylan-Escitalopram if you are allergic to it, or to any of the components of its formulation (for list of components see the section on “What dosage forms it comes in”).
- Stop taking Mylan-Escitalopram and contact your doctor immediately if you experience an allergic reaction or any severe side effect.

- Do not use Mylan-Escitalopram if you have been diagnosed with a congenital long QT syndrome

What the medicinal ingredient is:
Escitalopram oxalate

What the non medicinal ingredients are:
Colloidal silicon dioxide, croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, purified talc, titanium dioxide.

What dosage forms it comes in:
Mylan-Escitalopram tablets are available in 10 mg strength [bottles of 100, 500 and blisters of 10 tablets (cartons of 30 tablets)] and 20 mg strength [bottles of 100 and blisters of 10 tablets (cartons of 30 tablets)].

WARNINGS AND PRECAUTIONS

Treatment with these types of medications is most safe and effective when you and your doctor have good communication about how you are feeling.

Mylan-Escitalopram is not for use in children under 18 years of age.

New or Worsened Emotional or Behavioural Problems
Particularly in the first few weeks or when doses are adjusted, a small number of patients taking drugs of this type may feel worse instead of better; they may experience new or worsened feelings of agitation, hostility, anxiety, or thoughts about suicide or harm to others. Suicidal thoughts and actions can occur in any age group but may be more likely in patients 18 to 24 years old. Should this happen to you, or to those in your care, contact your doctor immediately. Close observation by a doctor is necessary in this situation. Do not discontinue your medication on your own.

You may be more likely to think like this if you have previously had thoughts about harming yourself.

You may find it helpful to tell a relative or close friend that you are depressed and ask them to read this leaflet. You might ask them to tell you if they think your depression is getting worse, or if they are worried about changes in your behaviour.

Effects on Pregnancy and Newborns

If you are already taking/using Mylan-Escitalopram and have just found out that you are pregnant, you should talk to your doctor immediately. You should also talk to your doctor if you are planning to become pregnant.
Possible complications at birth (from taking any newer antidepressant, including Mylan-Escitalopram):

Post-marketing reports indicate that some newborns whose mothers took an SSRI (Selective Serotonin Reuptake Inhibitor) such as escitalopram oxalate or other newer antidepressant during pregnancy have developed complications at birth requiring prolonged hospitalization, breathing support and tube feeding. Reported symptoms include: feeding and/or breathing difficulties, bluish skin, seizures, body temperature changes, vomiting, low blood sugar, tense or overly relaxed muscles, vivid reflexes, tremor, jitteriness, irritability, lethargy, sleepiness, sleeping difficulties and constant crying. In most cases, the newer antidepressant was taken during the third trimester of pregnancy. These symptoms are consistent with either a direct adverse effect of the antidepressant on the baby, or possibly a discontinuation syndrome caused by sudden withdrawal from the drug. These symptoms normally resolve over time. However, if your baby experiences any of these symptoms, contact your doctor as soon as you can.

Persistent Pulmonary Hypertension (PPHN) and newer antidepressants:

When taken during pregnancy, particularly in the last 3 months of pregnancy, medicines like Mylan-Escitalopram may increase the risk of a serious lung condition in babies, called persistent pulmonary hypertension of the newborn (PPHN), that causes breathing difficulties in newborns soon after birth, making the baby breathe faster and appear bluish. These symptoms usually begin during the first 24 hours after the baby is born. If this happens to your baby you should contact your doctor immediately.

If you are pregnant and taking an SSRI, or other newer antidepressant, you should discuss the risks and benefits of the various treatment options with your doctor. It is very important that you do NOT stop taking these medications without first consulting your doctor.

Risk of Bone Fractures:

Taking Mylan-Escitalopram may increase your risk of breaking a bone if you are elderly or have osteoporosis or have other major risk factors for breaking a bone. You should take extra care to avoid falls especially if you get dizzy or have low blood pressure.

Angle-closure Glaucoma:

Mylan-Escitalopram can cause dilation of the pupil which may trigger an acute glaucoma attack in an individual with narrow ocular angles. Having your eyes examined before you take Mylan-Escitalopram could help identify if you are at risk of having angle-closure glaucoma. Seek immediate medical attention if you experience:

• eye pain
• changes in vision
• swelling or redness in or around the eye.

Before you use Mylan-Escitalopram, tell your doctor:

• All your medical conditions, including heart problems, history of seizures, manic-depressive illness, liver or kidney disease, or diabetes.
• You have a bleeding disorder or have been told that you have low platelets.
• If you have QT/QTc prolongation or a family history of QT/QTc prolongation.
• If you have a personal history of fainting spells,
• If you have a family history of sudden cardiac death at <50 years.
• If you have electrolyte disturbances (e.g., low blood potassium, magnesium, or calcium levels) or conditions that could lead to electrolyte disturbances (e.g., vomiting, diarrhea, dehydration).
• If you have an eating disorder or are following a strict diet.
• If you had a recent bone fracture or were told you have osteoporosis or risk factors for osteoporosis.
• If you are pregnant or thinking about becoming pregnant, or if you are breast feeding.
• If you are receiving electroconvulsive treatment.
• Any medications (prescription or non-prescription) which you are taking or have taken within the last 14 days, especially monoamine oxidase inhibitors, pimozide, any other antidepressants, triptans used to treat migraines, lithium, tramadol or drugs containing tryptophan.
• If you ever had an allergic reaction to any medication or any of the ingredients mentioned in this leaflet.
• Your habits of alcohol and/or street drug consumption.
• Any natural or herbal products you are taking (e.g. St. John’s Wort).
• If you drive a vehicle or perform hazardous tasks during your work.

INTERACTIONS WITH THIS MEDICATION

<table>
<thead>
<tr>
<th>Serious Drug Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use Mylan-Escitalopram if you are taking or have recently taken:</td>
</tr>
<tr>
<td>• Monoamine oxidase inhibitor (e.g., phenelzine, tranylcypromine, moclobemide or selegiline)</td>
</tr>
<tr>
<td>• Pimozide</td>
</tr>
<tr>
<td>• Linezolid (an antibiotic)</td>
</tr>
<tr>
<td>• Methylene blue (intravenous)</td>
</tr>
</tbody>
</table>

The following list includes some, but not all, of the drugs that may increase the risk of side-effects while receiving Mylan-Escitalopram. You should check with your doctor or pharmacist before taking any other medication (prescription, nonprescription or natural/herbal) with Mylan-Escitalopram.

Other drugs that may interact with Mylan-Escitalopram include:

• Drugs to treat heart rhythm disturbances (antiarrhythmics)
• Antipsychotics
• Opioid painkillers
• Drugs to treat infections
• Diuretics (water pills)
• Laxatives (including enemas)
• Other SSRIs (citalopram) or any other antidepressant (e.g., imipramine, desipramine)
• Lithium
• Tryptophan
• Cimetidine
• Triptans (e.g., sumatriptan, zolmitriptan, naratriptan)
• Fluconazole
• Ketoconazole
• Itraconazole
• Racemic Citalopram
• Warfarin
• Omeprazole
• Any herbal product such as St. John’s Wort
• Certain medicines which may affect blood clotting and increase bleeding, such as oral anticoagulants (e.g., warfarin, dabigatran), acetylsalicylic acid (e.g., Aspirin) and other nonsteroidal anti-inflammatory drugs (e.g., ibuprofen)
• Certain medicines used to treat pain, such as fentanyl (used in anaesthesia or to treat chronic pain), tramadol, tapentadol, meperidine, methadone, pentazocine.
• Certain medicines used to treat cough, such as dextromethorphan.

Avoid drinking alcohol while taking Mylan-Escitalopram.

Drugs from the class that Mylan-Escitalopram belongs to may increase the chance of a bleeding event such as nose bleeds, bruising and even life threatening bleeding. This is more likely if you have a history of a bleeding disorder or are taking other drugs that are known to affect your platelets.

Treatment with an SSRI in patients with diabetes may alter glycaemic control (hypoglycaemia and hyperglycaemia).

Tell your doctor all the medicines (prescription or over the counter) and natural health products that you are using or thinking of taking.

PROPER USE OF THIS MEDICATION

Usual dose:
- It is important that you take Mylan-Escitalopram exactly as your doctor has instructed.

Usually your doctor will prescribe 10 mg per day, which you will take once daily preferably at the same time each day. If you are elderly, your doctor may prescribe a lower dose. This dose may be increased. Never change the dose of Mylan-Escitalopram you are taking, or that someone in your care is taking unless your doctor tells you to.

SIDE EFFECTS AND WHAT TO DO ABOUT THEM

- You should continue to take Mylan-Escitalopram even if you do not feel better, as it may take several weeks for your medication to work. Improvement may be gradual.

- Continue to take Mylan-Escitalopram for as long as your doctor recommends it. Do not stop taking your tablets abruptly even if you begin to feel better, unless you are told to do so by your doctor. Your doctor may tell you to continue to take Mylan-Escitalopram for several months. Continue to follow your doctor’s instructions.

Proper Handling Instructions
- Take everyday, as a single daily dose.
- Swallow the tablets whole with a drink of water. Do not chew them. Mylan-Escitalopram can be taken with or without food.

Overdose:

> **In case of drug overdose, contact a health care practitioner, hospital emergency department or regional Poison Centre immediately, even if there are no symptoms.**

If you have accidentally taken too much Mylan-Escitalopram contact your doctor, the Regional Poison Control Centre or nearest hospital emergency department immediately, even if you do not feel sick. If you go to the doctor or the hospital, take the Mylan-Escitalopram container with you. Some of the signs of an overdose could be dizziness, tremor, agitation, convulsion, coma, nausea, vomiting, change in heart rhythm, decreased blood pressure and seizure.

Missed dose:

If you miss a dose, do not worry. Do not take the missed tablet(s) - just take the next dose when it is due.

Other SSRIs (citalopram) or any other antidepressant (e.g., imipramine, desipramine) may cause unwanted effects (side-effects). These may include nausea, increased sweating, diarrhoea, fatigue, fever, constipation, clogged or runny nose, sleep disturbance, loss of appetite, increased appetite, increased weight, decreased interest in sex, decreased ability to reach orgasm, erectile dysfunction, anxiety, restlessness, abnormal dreams, difficulties falling asleep, drowsiness, yawning, tremor, shakiness), prickling of the skin, dizziness, dry mouth, heartburn, pain in muscles and joints, stomach pain and changes in heart rate.

- Contact your doctor before stopping or reducing your dosage of Mylan-Escitalopram. Symptoms such as dizziness, abnormal dreams, electric shock sensations, agitation, anxiety, emotional indifference, difficulty concentrating, headache, migraine, tremor (shakiness), nausea, vomiting, sweating or other symptoms may occur after stopping or reducing the dosage of escitalopram. Such
symptoms may also occur if a dose is missed. These symptoms usually disappear without needing treatment. Tell your doctor immediately if you have these or any other symptoms. Your doctor may adjust the dosage of escitalopram to reduce the symptoms.

- Side-effects are often mild and may disappear after a few days. If they are troublesome or persistent, or if you develop any other unusual side-effects while taking Mylan-Escitalopram, please consult your doctor.

- Usually Mylan-Escitalopram does not affect your ability to carry out normal daily activities. However, you should not drive a car or operate machinery until you are reasonably certain that Mylan-Escitalopram does not affect you adversely.

SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom/ effect</th>
<th>Talk with your doctor or pharmacist right away</th>
<th>Seek immediate medical assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncommon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic reactions: red skin, hives, itching, swelling of the lips, face, tongue, throat, trouble breathing, wheezing, shortness of breath, skin rashes, blisters of the skin, sores or pain in the mouth or eyes</td>
<td>Only if severe</td>
<td>In all cases</td>
</tr>
<tr>
<td>Allergic reactions: skin rash alone, hives alone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alteration of blood sugar control in patients with diabetes: Low blood sugar (symptoms of dizziness, lack of energy, drowsiness, headache, trembling, sweating) or High blood sugar (symptoms of increased thirst, increased urination, weakness, confusion, fruity breath odor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Platelets: bruising or unusual bleeding from the skin or other areas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

- **Hallucinations**: strange visions or sounds
- **Mania**: overactive behaviour and thoughts
- **Uncontrollable movements of the body or face**:
- **Inability to urinate**:
- **Serotonin syndrome**: a combination of symptoms, possibly including: agitation, confusion, tremor, sudden jerking of muscles, high fever
- **Low sodium level in blood**: symptoms of tiredness, weakness, confusion combined with achy, stiff or uncoordinated muscles
- **Glaucoma**: Eye pain, change in vision, swelling or redness in or around the eye
- **Seizures**: loss of consciousness with uncontrollable shaking (“fit”)
- **Liver disorder**: symptoms include nausea, vomiting, loss of appetite combined with itching, yellowing of the skin or eyes, dark urine
- **Gastrointestinal bleeding**: vomiting blood or passing blood in stools
- **New or Worsened Emotional or Behavioral Problems**: Akathisia: feeling restless and unable to sit or stand still
- **Unknown**: Abnormal heart rate or rhythm, palpitations, fainting

This list is not a complete list of side effects. If you have any unexpected effects while taking this drug, contact your doctor or pharmacist.
HOW TO STORE IT

- As with all medicines, keep Mylan-Escitalopram out of the reach and sight of children.
- Store your tablets at room temperature (15°C - 30°C) in a dry place and keep the container tightly closed.
- There is an expiry date on the label. Do not use the medicine after this date.
- If your doctor tells you to stop taking your medicine you should return any leftover tablets to the pharmacist, unless the doctor tells you to keep them at home.

REMEMBER: This medicine is for YOU. Only a doctor can prescribe it, so never offer it to any other person, even if their symptoms seem to be the same as yours.

REPORTING SUSPECTED SIDE EFFECTS

You can help improve the safe use of health products for Canadians by reporting serious and unexpected side effects to Health Canada. Your report may help to identify new side effects and change the product safety information.

3 ways to report:
- By calling 1-866-234-2345 (toll-free);
- By completing a Consumer Side Effect Reporting Form and sending it by:
 - Fax to 1-866-678-6789 (toll-free), or
 - Mail to: Canada Vigilance Program
 Health Canada, Postal Locator 0701E
 Ottawa, ON
 K1A 0K9

Postage paid labels and the Consumer Side Effect Reporting Form are available at MedEffect. [http://hc-sc.gc.ca/dhp- mps/medeff/index-eng.php]

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

MORE INFORMATION

This document can be found at: www.mylan.ca.

The full Product Monograph prepared for health professionals can be obtained by contacting the sponsor, Mylan Pharmaceuticals ULC at: 1-800-575-1379

This leaflet was prepared by Mylan Pharmaceuticals ULC
Etobicoke, Ontario M8Z 2S6

Revised on August 16, 2016

Mylan Pharmaceuticals ULC
Etobicoke, ON, M8Z 2S6
1-800-575-1379
www.mylan.