MONOGRAPHIE DE PRODUIT

PrPRO-LOVASTATIN

Lovastatine

Comprimés à 20 mg et 40 mg

USP

Régulateur du métabolisme lipidique

PRO DOC LTÉE

2925, boul. Industriel Laval, Québec H7L 3W9 **Date de révision :** 07 octobre 2016

Numéro de contrôle de la présentation : 198529

Table des matières

PARTIE I : RENSEIGNEMENTS POUR LE PROFESSIONNEL DE LA SANTÉ	3
RENSEIGNEMENTS SOMMAIRES SUR LE PRODUIT	
INDICATIONS ET USAGE CLINIQUE	
CONTRE-INDICATIONS	5
MISES EN GARDE ET PRÉCAUTIONS	5
EFFETS INDÉSIRABLES	
INTERACTIONS MÉDICAMENTEUSES	16
POSOLOGIE ET ADMINISTRATION	
SURDOSAGE	
MODE D'ACTION ET PHARMACOLOGIE CLINIQUE	
ENTREPOSAGE ET STABILITÉ	
FORMES POSOLOGIQUES, COMPOSITION ET CONDITIONNEMENT	22
PARTIE II: RENSEIGNEMENTS SCIENTIFIQUES	
RENSEIGNEMENTS PHARMACEUTIQUES	23
ESSAIS CLINIOUES	24
PHARMACOLOGIE DÉTAILLÉE	28
TOXICOLOGIE	
RÉFÉRENCES	39
PARTIE III : RENSEIGNEMENTS POUR LE CONSOMMATEUR	44

PrPRO-LOVASTATIN

Comprimés de lovastatine, USP

PARTIE I: RENSEIGNEMENTS POUR LE PROFESSIONNEL DE LA SANTÉ

RENSEIGNEMENTS SOMMAIRES SUR LE PRODUIT

Voie d'administration	Forme posologique / teneur	Tous les ingrédients non médicinaux
Orale	Comprimés à 20 mg et à 40 mg	amidon prégélifié, butylhydroxyanisol, cellulose microcristalline, FD & C bleu n°2 sur substrat d'aluminium, lactose, stéarate de magnésium, et les ingrédients suivants : Les comprimés à 20 mg contiennent aussi du FD & C bleu n°1 sur substrat d'aluminium. Les comprimés à 40 mg contiennent aussi du D & C jaune n°10 sur substrat d'aluminium.

INDICATIONS ET USAGE CLINIQUE

Hyperlipidémie

PRO-LOVASTATIN (lovastatine) est indiqué comme traitement d'appoint à un régime alimentaire, équivalant au moins à la phase 1 du régime de l'American Heart Association (AHA), pour abaisser les taux élevés de cholestérol total et de cholestérol lié aux lipoprotéines de basse densité (LDL-cholestérol) chez les patients atteints d'hypercholestérolémie primitive (types IIa et IIb)¹² (trouble du métabolisme des lipides caractérisé par un taux élevé de cholestérol sérique associé à un taux de triglycérides normal [Type IIa] ou élevé [Type IIb]), lorsque la réponse au traitement diététique et aux autres mesures non pharmacologiques est insuffisante.

Après avoir établi que l'élévation des lipides plasmatiques est primitive et non pas secondaire à des affections sous-jacentes telles qu'un diabète mal équilibré, une hypothyroïdie, un syndrome néphrotique, une maladie hépatique ou des dysprotéinémies, il faudrait s'assurer, chez les patients pour qui l'on envisage un traitement, que le taux élevé de cholestérol sérique total résulte d'un taux élevé de LDL-cholestérol. Cette précaution est particulièrement importante chez les patients dont le taux de triglycérides totaux est supérieur à 4,52 mmol/L (400 mg/dL) ou qui

présentent des concentrations anormalement élevées de cholestérol lié aux lipoprotéines de haute densité (HDL-cholestérol); dans ce cas, les fractions lipoprotéiniques autres que les LDL peuvent contribuer de façon significative à la hausse du taux de cholestérol total, sans qu'il y ait augmentation notable des risques de maladie cardiovasculaire. En général, on détermine la valeur du LDL-cholestérol à l'aide de l'équation suivante⁸:

LDL-C (mmol/L) = Cholestérol total - [(0, 37 x triglycérides) + HDL-C]

LDL-C (mg/dL) = Cholestérol total - [(0, 16 x triglycérides) + HDL-C]

Lorsque le taux de triglycérides totaux est supérieur à 4,52 mmol/L (400 mg/dL), cette équation n'est pas applicable. Chez ces patients, la mesure du LDL-cholestérol peut s'effectuer au moyen de l'ultracentrifugation.

Maladie coronarienne

Il a aussi été démontré que la lovastatine, utilisée chez des patients atteints de maladie coronarienne dans le cadre d'un traitement visant à abaisser les taux de cholestérol total et de LDL-C aux valeurs souhaitées, entraîne un ralentissement de la progression de l'athérosclérose coronarienne. Lors de deux études menées chez des patients de ce type^{4, 7,49}, c'est-à-dire deux essais de prévention secondaire, il a été démontré, au moyen de la coronarographie numérique, qu'une monothérapie avec la lovastatine freine la progression de l'athérosclérose coronarienne. Au cours de ces études d'une durée de 2 à 2,5 ans, cet effet ne s'est cependant pas traduit par une amélioration des paramètres cliniques (décès, infarctus du myocarde fatal et non fatal, hospitalisation en raison d'un angor instable et intervention de revascularisation coronarienne [angioplastie coronarienne transluminale percutanée et pontage aortocoronarien]). Ces études, toutefois, n'avaient pas été conçues pour évaluer la réduction du risque de morbidité et de mortalité d'origine coronarienne.

L'effet de la lovastatine sur la progression de l'athérosclérose coronarienne a été corroboré par des résultats similaires obtenus dans les carotides. En effet, dans l'étude ACAPS (Asymptomatic Carotid Artery Progression Study) menée auprès de patients hyperlipidémiques présentant des lésions carotidiennes asymptomatiques précoces sans maladie coronarienne établie, l'effet du traitement avec la lovastatine sur l'athérosclérose carotidienne a été évalué au moyen de l'échographie bidimensionnelle. On a observé une régression significative des lésions carotidiennes chez les patients recevant la lovastatine seule par rapport aux patients recevant le placebo. Toutefois, la valeur prédictive des changements constatés dans les carotides en ce qui concerne la survenue des accidents vasculaires cérébraux n'a pas encore été établie. Dans le groupe lovastatine, on a observé, comparativement au groupe placebo, une réduction significative du nombre de patients ayant présenté un événement cardiovasculaire grave (5 contre 14) et une réduction significative de la mortalité toutes causes (1 contre 8); cette étude n'avait toutefois pas la puissance statistique nécessaire pour mettre en évidence une réduction du risque de morbidité et de mortalité d'origine coronarienne. Cet essai vient corroborer les données des essais précités (voir ÉTUDES CLINIQUES).

CONTRE-INDICATIONS

- Patients présentant une hypersensibilité à ce médicament ou à l'un des composants du produit. Voir la section Formes posologiques, composition et conditionnement pour connaître la liste complète des ingrédients.
- Affection hépatique évolutive ou élévation persistante et inexpliquée des transaminases
- Administration concomitante d'inhibiteurs puissants du CYP3A4 (p. ex., l'itraconazole, le kétoconazole, le posaconazole, le voriconazole, les inhibiteurs de la protéase du VIH, le bocéprévir, le télaprévir, l'érythromycine, la clarithromycine, la télithromycine1 et la néfazodone et les médicaments contenant du cobicistat) [voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles].
- Femmes enceintes et femmes qui allaitent. Le cholestérol et les autres produits de la biosynthèse du cholestérol sont des substances essentielles au développement du fœtus (y compris la synthèse des stéroïdes et des membranes cellulaires). PRO-LOVASTATIN (lovastatine) ne devrait être administré aux femmes en âge de procréer que dans les cas où le risque de devenir enceinte est hautement improbable et que les patientes ont été avisées des dangers potentiels. Si la patiente devient enceinte pendant le traitement avec PRO-LOVASTATIN il importe de cesser immédiatement la prise du médicament et d'avertir la patiente des effets nuisibles possibles pour le fœtus. L'athérosclérose étant un processus chronique, l'interruption temporaire d'un traitement régulateur du métabolisme lipidique durant la grossesse ne devrait normalement avoir que peu de répercussions sur les résultats d'un traitement à long terme de l'hypercholestérolémie primitive (voir MISES EN GARDE ET PRÉCAUTIONS, Populations particulières, Femmes enceintes et Femmes qui allaitent).
- Administration concomitante de cyclosporine (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES).

MISES EN GARDE ET PRÉCAUTIONS

Généralités

Avant d'entreprendre un traitement avec PRO-LOVASTATIN (lovastatine), on doit tenter d'abaisser le taux de cholestérol sérique par un régime alimentaire et des exercices appropriés, par une perte de poids chez les personnes qui font de l'embonpoint et chez les obèses, et par le traitement de toute affection sous-jacente qui puisse provoquer l'hypercholestérolémie (voir INDICATIONS ET USAGE CLINIQUE). On doit recommander aux patients d'informer les médecins qu'ils consulteront ultérieurement d'un traitement antérieur avec PRO-LOVASTATIN ou avec tout autre régulateur du métabolisme lipidique.

On n'a pas évalué l'effet des changements attribuables à la lovastatine, à l'égard des taux de lipoprotéines, telle la réduction du cholestérol sérique, sur la morbidité et la mortalité cardiovasculaires ainsi que sur la mortalité générale.

¹ Non commercialisée au Canada

Utilisation dans l'hypercholestérolémie familiale homozygote (FH) : La lovastatine n'est pas efficace ou est moins efficace chez les patients atteints de la forme rare d'hypercholestérolémie familiale homozygote.

(Pour l'hypercholestérolémie familiale de forme hétérozygote, voir ÉTUDES CLINIQUES.)

Patients atteints d'hypercholestérolémie grave : L'administration de doses élevées de lovastatine (80 mg/jour) requises pour certains patients atteints d'hypercholestérolémie grave a été associée à des taux plasmatiques élevés de lovastatine.

Il faut user de prudence lorsque des patients atteints d'hypercholestérolémie grave présentent aussi une insuffisance rénale importante, sont âgés ou reçoivent conjointement un inhibiteur du cytochrome P₄₅₀ voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES).

Fonction endocrinienne et métabolisme

Fonction endocrinienne: Les inhibiteurs de l'HMG-CoA réductase diminuent la synthèse du cholestérol et, comme tel, peuvent théoriquement entraver l'élaboration des hormones stéroïdes surrénaliennes et sexuelles. Les résultats d'études cliniques ont démontré que la lovastatine ne réduit pas les concentrations plasmatiques du cortisol, n'altère pas la réserve surrénalienne et n'abaisse pas la concentration plasmatique basale de testostérone. Toutefois, les effets des inhibiteurs de l'HMG-CoA réductase sur la fertilité des hommes n'ont pas été évalués chez un nombre suffisant de patients. Les effets, s'il y a lieu, sur l'axe hypophyso-gonadique sont inconnus chez la femme non ménopausée.

Il faut évaluer soigneusement les patients traités à la lovastatine qui présentent des signes cliniques de dysfonctionnement endocrinien. Il faut user de prudence lorsqu'un inhibiteur de l'HMG-CoA réductase ou un autre agent indiqué pour abaisser la cholestérolémie sont administrés à des patients recevant d'autres médicaments (par exemple la spironolactone ou la cimétidine) pouvant diminuer le taux des hormones stéroïdes endogènes (*voir* INTERACTIONS MÉDICAMENTEUSES, Inhibiteurs du cytochrome P₄₅₀ [CYP3A4]).

Une augmentation de la glycémie à jeun et des niveaux de HbA1c, avec les inhibiteurs de HMG-CoA réductase en tant que classe, a été rapportée. Pour certains patients à risque élevé de diabète sucré, l'hyperglycémie était suffisante pour les faire passer à un statut de diabète. Les bénéfices du traitement continuent de surpasser la légère augmentation du risque. Un contrôle périodique de ces patients est recommandé.

Effet sur les lipoprotéines (a) [Lp(a)]: Chez certains patients, l'effet bénéfique attribuable à la réduction des taux de cholestérol total et de LDL-C peut être partiellement atténué par une hausse concomitante du taux de lipoprotéines (a) [Lp(a)]. Par conséquent, tant que l'on ne disposera pas de nouvelles données provenant d'études cliniques contrôlées, on propose de mesurer, si possible, les taux sériques de Lp(a) chez les patients traités avec la lovastatine.

Effet sur les taux de CoQ_{10} (ubiquinone): Les résultats d'études cliniques à court terme ont démontré une diminution importante des concentrations plasmatiques de CoQ_{10} chez les patients

traités avec la lovastatine et d'autres inhibiteurs de l'HMG-CoA réductase (statines). L'importance clinique d'une carence éventuelle en CoQ₁₀ provoquée à long terme par les composés de cette classe n'a toutefois pas été établie (*voir* BIBLIOGRAPHIE).

Fonctions hépatique/biliaire/pancréatique

Lors des études cliniques contrôlées initiales englobant 695 patients, on a observé une augmentation marquée et persistante des transaminases sériques (jusqu'à plus de 3 fois la limite supérieure de la normale) chez 1,6 % des patients adultes qui avaient reçu la lovastatine pendant au moins un an (*voir* EFFETS INDÉSIRABLES, Analyses de laboratoire). À l'interruption du traitement, les taux de transaminases sont revenus lentement à leurs valeurs initiales. Ces augmentations sont apparues généralement 3 à 12 mois après le début du traitement avec la lovastatine et, dans la plupart des cas, elles n'étaient pas associées à un ictère ou à d'autres signes ou symptômes cliniques (*voir* INTERACTIONS MÉDICAMENTEUSES et EFFETS INDÉSIRABLES, Effets indésirables rapportés après la commercialisation du produit).

Selon les résultats de l'étude EXCEL menée durant 48 semaines chez 8 245 patients atteints d'hypercholestérolémie modérée, le pourcentage de patients ayant présenté une hausse marquée (plus de 3 fois la limite supérieure de la normale) des transaminases sériques lors de mesures successives a été de 0,1 % chez les patients recevant un placebo, 0,1 % chez les patients recevant 20 mg par jour de lovastatine, 0,9 % chez les patients recevant 40 mg par jour de lovastatine et 1,5 % chez les patients recevant 80 mg par jour de lovastatine (*voir* ÉTUDES CLINIQUES).

On recommande de procéder à des examens de la fonction hépatique chez tous les patients au début du traitement et périodiquement par la suite. On doit surveiller plus particulièrement les patients chez qui l'on constate une élévation du taux de transaminases sériques et ceux chez qui l'on augmente la dose à 40 mg par jour ou plus. Dans ces cas, on devra refaire les mesures le plus tôt possible, puis les répéter à des intervalles plus rapprochés.

Des cas d'insuffisance hépatique mortelle et non mortelle ont rarement été rapportés depuis la commercialisation du produit chez les patients utilisant des statines, y compris la lovastatine. Si une lésion hépatique grave avec des symptômes cliniques et/ou une hyperbilirubinémie ou un ictère survient pendant le traitement au moyen de PRO-LOVASTATIN, interrompez immédiatement le traitement. Si aucune autre cause n'est établie, ne reprenez pas le traitement au moyen de PRO-LOVASTATIN.

Si les taux de transaminases ont tendance à augmenter, notamment s'ils atteignent des valeurs équivalant à 3 fois la limite supérieure de la normale et s'y maintiennent, il faut interrompre la prise du médicament.

Comme les autres inhibiteurs de l'HMG-CoA réductase, PRO-LOVASTATIN devrait être administré avec prudence aux patients qui consomment des quantités importantes d'alcool ou qui ont des antécédents de maladie hépatique, ou qui présentent ces deux caractéristiques à la fois. Une affection hépatique évolutive ou une élévation inexpliquée des transaminases sériques sont des contre-indications à l'administration de PRO-LOVASTATIN, si l'un de ces troubles survient au cours du traitement, on doit interrompre la prise du médicament.

Des élévations modérées des transaminases sériques (moins de trois fois la limite supérieure de la normale) ont été rapportées après un traitement avec la lovastatine (*voir* EFFETS INDÉSIRABLES). Ces anomalies n'étaient pas spécifiques à l'administration de la lovastatine et ont été également observées avec d'autres régulateurs du métabolisme lipidique comparables. Apparaissant généralement au cours des 3 premiers mois de traitement, elles ont été de nature transitoire et n'ont été accompagnées d'aucun autre symptôme. En outre, elles n'ont pas nécessité l'interruption du traitement.

Effets sur les muscles

Myopathie/rhabdomyolyse : On a rapporté des effets indésirables sur les muscles squelettiques, comme la myalgie, la myopathie et, rarement la rhabdomyolyse, chez des patients traités avec la lovastatine.

De rares cas de rhabdomyolyse, accompagnée d'une insuffisance rénale aiguë consécutive à une myoglobinurie, ont été rapportés avec la lovastatine et les autres inhibiteurs de l'HMG-CoA réductase.

On doit soupçonner une myopathie, définie comme une douleur ou une faiblesse musculaire associée à une élévation de la créatine kinase dépassant dix fois la limite supérieure de la normale, chez les patients qui présentent une myalgie diffuse, une sensibilité ou une faiblesse musculaire ou une élévation marquée des taux de créatine kinase. Les patients doivent être avisés de signaler rapidement à leur médecin toute douleur, sensibilité ou faiblesse musculaire inexpliquée, en particulier si de tels symptômes sont associés à des malaises généraux ou à de la fièvre. On devrait procéder au dosage du taux de créatine kinase chez les patients qui présentent des signes ou symptômes évocateurs d'une myopathie. Le traitement avec PRO-LOVASTATIN devrait être interrompu immédiatement lors d'une élévation marquée de la créatine kinase ou lorsqu'une myopathie est diagnostiquée ou soupçonnée. La myopathie évolue parfois vers une rhabdomyolyse, une affection qui a rarement entraîné la mort, accompagnée ou non d'une insuffisance rénale aiguë consécutive à une myoglobinurie. Un taux plasmatique élevé d'inhibiteurs de l'HMG-CoA réductase augmente le risque de myopathie.

Facteurs prédisposant à la myopathie/rhabdomyolyse : On doit faire preuve de prudence lorsqu'on prescrit PRO-LOVASTATIN, comme les autres inhibiteurs de l'HMG-CoA réductase, chez les patients qui présentent certains facteurs prédisposant à la myopathie/rhabdomyolyse parmi les suivants :

- Antécédents personnels ou familiaux de troubles musculaires héréditaires
- Antécédents de toxicité musculaire observée avec un autre inhibiteur de l'HMG-CoA réductase
- Utilisation concomitante de fibrate ou de niacine
- Hypothyroïdie
- Consommation excessive d'alcool
- Exercices physiques intenses
- $\hat{A}ge > 70$ ans
- Insuffisance rénale

- Insuffisance hépatique
- Diabète accompagné de stéatose hépatique
- Interventions chirurgicales et traumatisme
- Constitution fragile
- Situations pouvant entraîner une élévation du taux plasmatique de l'ingrédient actif (*voir* INTERACTIONS MÉDICAMENTEUSES, Interactions médicament-médicament)

On doit cesser ou interrompre temporairement le traitement avec PRO-LOVASTATIN chez les patients présentant des troubles graves et aigus évocateurs d'une myopathie ou favorisant le développement d'une rhabdomyolyse (p. ex. septicémie, hypotension, intervention chirurgicale majeure, traumatisme, trouble grave du métabolisme endocrinien et de l'équilibre électrolytique et convulsions réfractaires).

Myopathie/rhabdomyolyse causée par une interaction médicamenteuse

Interactions pharmacocinétiques: Une myopathie grave, y compris une rhabdomyolyse, a été associée à l'utilisation des inhibiteurs de l'HMG-CoA réductase. Cette réaction survient plus fréquemment lorsque ces médicaments sont administrés conjointement avec des médicaments qui inhibent le système enzymatique cytochrome P_{450} . La lovastatine est métabolisée par l'isoforme 3A4 du cytochrome P_{450} et peut, par conséquent, interagir avec des médicaments qui inhibent cette enzyme (voir CONTRE, INDICATIONS, MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES, Inhibiteurs du cytochrome P_{450} [CYP3A4]).

Le risque de myopathie et de rhabdomyolyse augmente lorsque la lovastatine est administrée conjointement avec les médicaments suivants :

- Inhibiteurs puissants du CYP3A4: L'administration concomitante d'autres médicaments reconnus pour leur effet inhibiteur puissant sur le CYP3A4 à des doses thérapeutiques, p. ex., les antifongiques azolés tels que l'itraconazole, le kétoconazole, le posaconazole et le voriconazole, les antibiotiques tels que l'érythromycine, la clarithromycine et la télithromycine¹, les inhibiteurs de la protéase du VIH, le bocéprévir, le télaprévir, et l'antidépresseur néfazodone¹ ou les médicaments contenant du cobicistat,, est contreindiquée (voir CONTRE-INDICATIONS, INTERACTIONS MÉDICAMENTEUSES, Inhibiteurs du cytochrome P450 [CYP3A4] et PHARMACOLOGIE DÉTAILLÉE, Pharmacocinétique).
- **Gemfibrozil**: On doit éviter d'utiliser la lovastatine avec le gemfibrozil.
- Cyclosporine : L'utilisation concomitante de la cyclosporine avec la lovastatine est contreindiquée (voir CONTRE-INDICATIONS et INTERACTIONS MÉDICAMENTEUSES).

¹ Non commercialisée au Canada

- Colchicine: Des cas de myopathie, y compris la rhabdomyolyse, ont été rapportés lorsque la lovastatine était administrée conjointement avec la colchicine. Il faut user de prudence lorsqu'on prescrit la lovastatine avec la colchicine (voir INTERACTIONS MÉDICAMENTEUSES).
- Hypolipidémiants pouvant causer une myopathie lorsqu'ils sont administrés seuls : Autres fibrates et la niacine utilisée à des doses hypolipidémiantes (≥ 1 g/jour) (voir INTERACTIONS MÉDICAMENTEUSES, Gemfibrozil, autres fibrates et niacine [acide nicotinique] utilisée à des doses hypolipidémiantes [≥ 1 g/jour]).
- Acide fusidique (oral1 ou i.v.1): Le risque de myopathie et de rhabdomyolyse est augmenté lorsque l'acide fusidique (oral1 ou i.v.1) est utilisé de façon concomitante avec un membre étroitement lié à la classe des inhibiteurs de HMG-CoA réductase (voir MISES EN GARDE ET PRÉCAUTIONS, 2. Mesures pour réduire le risque de myopathie et de rhabdomyolyse causée par les interactions médicamenteuses, INTERACTIONS MÉDICAMENTEUSES, Interactions médicaments-médicaments).
- Danazol, vérapamil et diltiazem en particulier lorsqu'ils sont administrés conjointement avec des doses élevées de lovastatine (*voir* INTERACTIONS MÉDICAMENTEUSES et PHARMACOLOGIE DÉTAILLÉE, Pharmacocinétique).
- Amiodarone, lorsqu'elle est administrée conjointement avec des doses élevées d'un membre étroitement apparenté de la classe des inhibiteurs de l'HMG-CoA réductase (voir INTERACTIONS MÉDICAMENTEUSES).
- Inhibiteurs modérés du CYP3A4: Les patients qui prennent d'autres médicaments reconnus pour leur effet inhibiteur modéré sur le CYP3A4 conjointement avec la lovastatine, en particulier lorsqu'ils sont administrés avec des doses élevées de lovastatine, peuvent présenter un risque accru de myopathie. Lorsqu'on co-administre la lovastatine avec un inhibiteur modéré du CYP3A4, un ajustement de la dose de lovastatine pourrait être nécessaire.

Le risque de myopathie et de rhabdomyolyse est lié à la dose. Dans l'étude clinique EXCEL, (Expanded Clinical Evaluation of Lovastatin) où les patients ont fait l'objet d'une surveillance attentive et où certains médicaments pouvant causer une interaction ont été exclus, on a observé un cas de myopathie chez 4 933 patients choisis au hasard pour recevoir la lovastatine à raison de 20-40 mg par jour pendant 48 semaines et 4 cas chez 1 649 patients choisis au hasard pour recevoir la dose de 80 mg par jour.

Réduction du risque de myopathie/rhabdomyolyse

1. Mesures d'ordre général

Il faut informer tous les patients qui amorcent un traitement à la lovastatine ou chez qui la dose de ce médicament est augmentée du risque de myopathie et les aviser de rapporter immédiatement toute douleur, sensibilité ou faiblesse musculaires inexpliquées. On doit interrompre immédiatement le traitement à la lovastatine lorsqu'une myopathie est diagnostiquée ou soupçonnée. La présence de ces symptômes ou un taux de créatine kinase (CK) dépassant 10 fois la limite supérieure de la normale, ou ces deux éléments à la fois, sont les

signes d'une myopathie. Dans la plupart des cas, lorsque les patients interrompent le traitement sans tarder, les symptômes musculaires disparaissent et le taux de CK revient à la normale (*voir* EFFETS INDÉSIRABLES). On devrait procéder au dosage périodique de la CK chez les patients qui amorcent un traitement avec la lovastatine ou chez qui la dose de ce médicament est augmentée, en sachant que cette mesure ne permet pas toujours de prévenir la survenue d'une myopathie.

Parmi les patients chez qui la rhabdomyolyse est apparue lors d'un traitement avec la lovastatine, un grand nombre présentaient des antécédents médicaux complexes, notamment une insuffisance rénale résultant généralement d'un diabète de longue date. Ces patients doivent faire l'objet d'une surveillance plus étroite. On devrait interrompre temporairement le traitement avec la lovastatine, c'est-à-dire quelques jours avant de procéder à une chirurgie majeure non urgente, ou encore lorsque survient une affection grave ou lorsqu'il faut pratiquer une intervention chirurgicale d'urgence.

2. Mesures destinées à réduire le risque de myopathie/rhabdomyolyse causée par une interaction médicamenteuse (voir ci-dessus)

L'administration de lovastatine conjointement avec les inhibiteurs puissants du CYP3A4 (p. ex., l'itraconazole, le kétoconazole, le posaconazole, le voriconazole, l'érythromycine, la clarithromycine, la télithromycine¹, les inhibiteurs de la protéase du VIH, le bocéprévir, le télaprévir, la néfazodone1¹ ou les médicaments contenant du cobicistat) est contre-indiquée. Si l'on ne peut éviter de recourir à un traitement à court terme avec un inhibiteur puissant du CYP3A4, on doit alors cesser d'administrer la lovastatine durant le traitement au moyen de ces médicaments. On doit éviter de recourir à d'autres médicaments reconnus pour leur effet inhibiteur puissant sur le CYP3A4 sauf si les bienfaits de l'association médicamenteuse l'emportent sur les risques encourus (voir CONTRE-INDICATIONS, INTERACTIONS MÉDICAMENTEUSES et PHARMACOLOGIE DÉTAILLÉE, Pharmacocinétique).

On doit éviter d'utiliser la lovastatine avec le gemfibrozil.

L'utilisation concomitante de la cyclosporine avec la lovastatine est contre-indiquée.

L'acide fusidique (oral1 ou i.v.1) ne doit pas être coadministrée avec des statines. Des cas de rhabdomyolyses (incluant quelques cas de décès) chez les patients recevant cette combinaison ont été rapportés. Chez les patients pour qui l'usage d'acide fusidique systémique est considéré essentiel, le traitement à la lovastatine devrait être discontinué tout au long de la durée du traitement à l'acide fusidique. Dans des circonstances exceptionnelles, lorsque l'acide fusique systémique de façon est nécessaire, par exemple pour le traitement d'infections graves, la décision et la justification du médecin est requise pour co-administrer la lovastatine et l'acide fusidique, ce qui peut uniquement être considéré au cas par cas sous une étroite supervision médicale et suite à une évaluation des risques encourus par les patients (*voir* INTERACTIONS MÉDICAMENTEUSES, Interactions médicament-médicament).

_

¹ Non commercialisée au Canada

Chez les patients qui prennent de la lovastatine en association avec du danazol, du vérapamil, du diltiazem ou d'autres fibrates (à l'exception du gemfibrozil), ou de la niacine administrée à des doses hypolipidémiantes (≥ 1 g/jour), la dose de lovastatine ne devrait pas excéder 20 mg par jour. Chez les patients qui prennent ces autres fibrates, du danazol, du vérapamil ou du diltiazem, on doit soupeser attentivement les bienfaits de l'utilisation de la lovastatine en regard des risques de l'association médicamenteuse.

Chez les patients qui prennent de la lovastatine conjointement avec de l'amiodarone, la dose de lovastatine ne devrait pas excéder 40 mg par jour. On doit éviter d'utiliser la lovastatine à des doses supérieures à 40 mg par jour avec l'amiodarone sauf si les bienfaits sur le plan clinique l'emportent sur les risques accrus de myopathie.

Il faut user de prudence lorsqu'on prescrit le fénofibrate ou la niacine (≥ 1 g/jour) conjointement avec la lovastatine, car ces médicaments pris individuellement peuvent entraîner une myopathie. Chez les patients qui prennent du fénofibrate ou de la niacine, on doit soupeser attentivement les bienfaits de l'utilisation de la lovastatine en regard des risques de l'association médicamenteuse. L'ajout d'un fibrate ou de la niacine à la lovastatine n'entraîne qu'une légère réduction additionnelle du taux de LDL-cholestérol, mais permet une réduction et une augmentation plus marquées des taux de triglycérides et de HDL-cholestérol, respectivement. Lors d'études cliniques à court terme menées chez un nombre limité de patients soumis à une surveillance attentive, l'administration conjointe de fibrates ou de niacine et de faibles doses de lovastatine n'a entraîné aucun cas de myopathie.

Fonction oculaire

Les données recueillies à long terme au cours des études cliniques n'indiquent pas que la lovastatine exerce un effet défavorable sur le cristallin humain.

Fonction rénale

Étant donné que l'excrétion rénale de la lovastatine est très faible, il n'est pas nécessaire de modifier la posologie chez les patients atteints d'insuffisance rénale modérée.

Dans les cas d'insuffisance rénale grave (clairance de la créatinine < 0,5 mL/s [30 mL/min]), il faut évaluer le patient avec soin si l'on envisage d'administrer une dose supérieure à 20 mg par jour et, si cette dose est jugée essentielle, l'administrer avec prudence (*voir* MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et ÉTUDES CLINIQUES).

Peau

Aucun syndrome d'hypersensibilité n'a été décrit comme tel jusqu'à maintenant. Il semble cependant que quelques cas d'éosinophilie et d'éruptions cutanées aient été associés au traitement avec la lovastatine. Par conséquent, lorsqu'une hypersensibilité est soupçonnée, on conseille d'interrompre l'administration de PRO-LOVASTATIN.

Populations particulières

Femmes enceintes : PRO-LOVASTATIN est contre-indiqué durant la grossesse (voir TOXICOLOGIE, Reproduction et effets tératogènes).

L'innocuité de la lovastatine n'a pas été établie chez les femmes enceintes. Aucune étude clinique contrôlée n'a été menée dans cette population. De rares cas d'anomalies congénitales ont été rapportés après l'exposition intra-utérine du fœtus à un inhibiteur de l'HMG-CoA réductase. Cependant, selon le suivi effectué chez environ 200 femmes enceintes qui avaient pris la lovastatine ou un autre inhibiteur de l'HMG-CoA réductase de structure apparentée lors du premier trimestre de la grossesse, la fréquence des anomalies congénitales a été comparable à celle observée dans la population générale. Le nombre de grossesses était suffisant sur le plan statistique pour exclure toute hausse de la fréquence des anomalies congénitales atteignant ou dépassant 2,5 fois celle attendue normalement.

L'athérosclérose étant un processus chronique, l'interruption temporaire d'un traitement hypolipidémiant durant la grossesse ne devrait normalement avoir que peu de répercussions sur les risques à long terme liés à l'hypercholestérolémie primitive. Bien qu'aucune donnée n'ait montré que la fréquence des anomalies congénitales chez les enfants de patientes ayant pris de la lovastatine ou un autre inhibiteur de l'HMG-CoA réductase de structure apparentée soit différente de celle observée dans la population générale, la prise de lovastatine pendant la grossesse peut entraîner chez le fœtus une réduction du taux de mévalonate, un précurseur de la synthèse du cholestérol. C'est pourquoi PRO-LOVASTATIN ne doit pas être utilisé chez les femmes enceintes, chez celles qui essaient de le devenir ou encore chez celles qui croient l'être. On doit interrompre le traitement au moyen de PRO-LOVASTATIN pendant la grossesse ou jusqu'à ce qu'on puisse confirmer que la patiente n'est pas enceinte (*voir* CONTRE-INDICATIONS et BIBLIOGRAPHIE).

Femmes qui allaitent : On ne sait pas si la lovastatine est excrété dans le lait maternel humain. Cependant, comme c'est le cas de nombreux médicaments, et en raison du risque de réactions défavorables graves chez le nourrisson, les patientes qui prennent PRO-LOVASTATIN ne devraient pas allaiter (*voir* CONTRE-INDICATIONS).

Enfants : Comme l'expérience clinique avec la lovastatine est limitée chez les enfants, l'innocuité et l'efficacité de ce médicament dans ce groupe d'âge n'ont pas été établies.

Personnes âgées (> 60 ans) : Chez les patients de plus de 60 ans, l'efficacité de la lovastatine est apparue semblable à celle observée dans la population générale. On n'a pas noté non plus de différences dans la fréquence des réactions défavorables, tant sur le plan clinique qu'au niveau des résultats des tests de laboratoire.

Les personnes âgées peuvent être plus susceptibles de présenter une myopathie (*voir* MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles – Facteurs prédisposant à la myopathie/rhabdomyolyse).

EFFETS INDÉSIRABLES

Aperçu des effets indésirables

La lovastatine a été comparé à un placebo chez 8 245 patients atteints d'hypercholestérolémie (taux de cholestérol total compris entre 6,2 et 7,8 mmol/L), dans le cadre de l'étude EXCEL, une étude à double insu, avec répartition au hasard, menée en mode parallèle, d'une durée de 48 semaines. Les effets indésirables considérés comme peut-être, probablement ou certainement reliés au médicament sont regroupés dans le tableau ci-dessous.

	PLACEBO (n=1663)	LOVASTATIN 20 mg,	LOVASTATIN 40 mg,	LOVASTATIN 20 mg,	LOVASTATIN 40 mg,
	%	au souper (n=1642) %	au souper (n=1645) %	2 f.p.j. (n=1646) %	2 f.p.j. (n=1649) %
Organisme entier					
Asthénie	1,4	1,7	1,4	1,5	1,2
Appareil gastro- intestinal					
Douleur abdominale	1,6	2,0	2,0	2,2	2,5
Constipation	1,9	2,0	3,2	3,2	3,5
Diarrhée	2,3	2,6	2,4	2,2	2,6
Dyspepsie	1,9	1,3	1,3	1,0	1,6
Flatulence	4,2	3,7	4,3	3,9	4,5
Nausées	2,5	1,9	2,5	2,2	2,2
Appareil musculosquelettique					
Crampes musculaires	0,5	0,6	0,8	1,1	1,0
Myalgie	1,7	2,6	1,8	2,2	3,0
Système nerveux/troubles psychiques					
Étourdissements	0,7	0,7	1,2	0,5	0,5
Céphalées	2,7	2,6	2,8	2,1	3,2
Peau					
Éruption cutanée	0,7	0,8	1,0	1,2	1,3
Sens					
Vue brouillée	0,8	1,1	0,9	0,9	1,2

Les effets indésirables suivants, considérés comme peut-être, probablement ou certainement reliés au médicament, sont survenus chez 0,5 % à 1,0 % des patients. Dans tous les cas, la fréquence des effets indésirables n'a pas été différente sur le plan statistique dans les groupes ayant reçu le médicament et dans celui ayant reçu le placebo.

Organisme entier: Douleur thoracique

Appareil gastro-intestinal : Régurgitation acide, sécheresse de la bouche, vomissements

Appareil musculosquelettique : Douleur à la jambe, douleur à l'épaule, arthralgie

Système nerveux/troubles psychiatriques: Insomnie, paresthésie

Peau: Alopécie, prurit

Sens: Irritation oculaire

Aucune différence significative n'a été relevée parmi les groupes de traitement, y compris le groupe placebo, quant à la fréquence des effets indésirables graves, notamment les décès d'origine coronarienne, les infarctus du myocarde non fatals, les cancers et les décès toutes causes. Cette étude n'avait pas été conçue et n'avait pas la puissance statistique pour évaluer la fréquence de ces effets indésirables graves. Parmi les patients admis à l'étude EXCEL, un petit groupe présentait des risques ou des antécédents de maladie coronarienne; toutefois, on ne peut appliquer les résultats de l'étude aux autres segments de la population à risque élevé.

Analyses de laboratoire : On a observé une augmentation marquée et persistante des transaminases sériques (*voir* MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles).

On a rapporté d'autres anomalies dans les tests de la fonction hépatique, y compris une élévation de la phosphatase alcaline et de la bilirubine. Dans l'étude EXCEL, 7,3 % des patients traités avec la lovastatine ont présenté une élévation du taux de CK atteignant, en une occasion ou plus, une valeur au moins deux fois supérieure à la normale, en comparaison de 6,2 % des patients ayant reçu un placebo.

L'étude EXCEL excluait toutefois les patients qui présentaient des facteurs reconnus prédisposant à la myopathie (*voir* MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES, Effets du médicament sur les constantes biologiques).

Système nerveux : Des examens effectués chez plus de 30 patients, comprenant l'évaluation du potentiel évoqué visuel, la mesure de la conduction nerveuse et une électromyographie, ont permis de démontrer que la lovastatine ne produisait pas d'effets neurotoxiques.

Effet sur le cristallin humain : (voir MISES EN GARDE ET PRÉCAUTIONS).

Effets indésirables rapportés après la commercialisation du produit

Les effets indésirables suivants ont aussi été rapportés après la commercialisation de la lovastatine : hépatite, insuffisance hépatique fatale ou non fatale (très rarement), ictère cholostatique, vomissements, anorexie, paresthésie, neuropathie périphérique, troubles psychiatriques (y compris l'anxiété), dépression, dysfonction érectile, alopécie, érythème polymorphe (y compris le syndrome de Stevens-Johnson) et érythrodermie bulleuse avec épidermolyse.

Des cas de troubles cognitifs (p. ex., perte de mémoire, oublis, amnésie, troubles de la mémoire, confusion) ont rarement été rapportés depuis la commercialisation du produit chez les patients

utilisant des statines. Ces troubles cognitifs ont été signalés avec toutes les statines. Les cas rapportés sont généralement bénins et réversibles lorsque le traitement au moyen de statines est interrompu. Les délais avant l'apparition (1 jour à plusieurs années) et la disparition (délai médian de 3 semaines) des symptômes sont variables.

Troubles endocriniens

Une hausse de la glycémie à jeun et des niveaux de HbA1c a été rapportée avec lovastatine.

Des cas de gynécomastie ont été rapportés à la suite du traitement avec d'autres inhibiteurs de l'HMG-CoA réductase.

On a rapporté, quoique rarement, un syndrome apparent d'hypersensibilité caractérisé par la présence d'un ou de plusieurs des signes et symptômes suivants : anaphylaxie, œdème angioneurotique, syndrome lupoïde, pseudopolyarthrite rhizomélique, dermatomyosite, vascularite, thrombopénie, leucopénie, éosinophilie, anémie hémolytique, présence d'anticorps antinucléaires, augmentation de la vitesse de sédimentation, arthrite, arthralgie, urticaire, asthénie, photosensibilité, fièvre, bouffées vasomotrices, frissons, dyspnée et malaise.

Les effets indésirables suivants ont été rapportés avec certaines statines : Troubles musculaires

Il n'y eu que de très rares observations de myopathie nécrosante à médiation auto-immune (MNMAI), une myopathie auto-immune, associée à l'usage de statines. La MNMAI est caractérisée par une faiblesse du muscle proximal et d'une concentration élevée de créatinine kinase dans le sérum, qui persiste malgré la discontinuation du traitement aux statines; des biopsies musculaires montrant des nécroses myopatiques sans inflammation significative; une amélioration avec des agents immunosuppresseurs (voir MISE EN GARDE ET PRÉCAUTIONS, Effets sur les muscles).

Troubles psychiatriques:

Troubles du sommeil, y compris insomnie et cauchemars.

Troubles de l'humeur.

Troubles pulmonaires:

Maladie pulmonaire interstitielle : très rares cas de maladie pulmonaire interstitielle, en particulier pendant un traitement à long terme. En cas de maladie pulmonaire interstitielle soupçonnée, le traitement au moyen d'une statine doit être interrompu.

INTERACTIONS MÉDICAMENTEUSES

Interactions médicament-médicament

Médicaments contre-indiqués

L'utilisation concomitante de ces médicaments est contre-indiquée :

Inhibiteurs du cytochrome P450 (CYP3A4): Comme la lovastatine n'exerce pas d'activité inhibitrice sur l'isoforme 3A4 du cytochrome P450 (CYP3A4), elle ne devrait pas affecter les taux plasmatiques d'autres médicaments métabolisés par cette isoenzyme (CYP3A4). Cependant, la lovastatine est un substrat du CYP3A4. Par conséquent, chez les patients traités avec la lovastatine, le risque de myopathie peut être augmenté par la prise de puissants inhibiteurs du CYP3A4 qui accroissent l'activité inhibitrice à l'égard de l'HMG-CoA réductase. L'administration concomitante de médicaments reconnus pour leur effet inhibiteur puissant sur le CYP3A4 (comme l'itraconazole, le kétoconazole, le posaconazole, le voriconazole, l'érythromycine, la clarithromycine, la télithromycine¹, les inhibiteurs de la protéase du VIH, le bocéprévir, le télaprévir et la néfazodone let les médicaments contenant du cobicistat) est contreindiquée (voir CONTRE-INDICATIONS; MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et PHARMACOLOGIE DÉTAILLÉE, Pharmacocinétique).

Érythromycine, clarithromycine et télithromycine²: (voir CONTREINDICATIONS, MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles).

Cyclosporine : Le risque de myopathie et de rhabdomyolyse augmente lors de l'administration concomitante de cyclosporine. L'utilisation concomitante de ce médicament et de la lovastatine est contre-indiquée (voir CONTREINDICATIONS, MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et PHARMACOLOGIE DÉTAILLÉE, Pharmacocinétique).

Association avec d'autres régulateurs du métabolisme lipidique : Tout traitement d'association doit être évalué avec prudence car les données provenant d'études contrôlées sont limitées. D'après les données de pharmacovigilance, le gemfibrozil, les autres fibrates et la niacine (acide nicotinique) utilisée à des doses hypolipidémiantes peuvent accroître le risque de myopathie lorsqu'ils sont administrés conjointement avec un inhibiteur de l'HMG-CoA réductase, probablement en raison du fait qu'ils peuvent causer une myopathie lorsqu'ils sont administrés seuls (voir ci-dessous et MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles). Il importe donc d'évaluer avec prudence tout traitement d'association.

Acide fusidique (oral1 ou i.v.1): Le risque de myopatie/rhabdomyolyse est augmenté lorsque l'acide fusidique (oral1 ou i.v.1) est utilisé de façon concomitante avec un membre étroitement relié à la classe des inhibiteurs de HMG CoA réductase (voir MISE EN GARDE ET PRÉCAUTIONS, Effets sur les muscles, Autres drogues). Aucune donnée clinique sur les interactions médicamenteuses entre l'acide fusidique et la lovastatine n'est disponible à ce jour.

Colchicine : Des cas de myopathie, y compris la rhabdomyolyse, ont été rapportés lorsque la lovastatine était administrée conjointement avec la colchicine, et il faut user de prudence lorsqu'on prescrit la lovastatine avec la colchicine.

Résines fixatrices des acides biliaires : Les données préliminaires semblent indiquer que l'administration conjointe de la lovastatine et de cholestyramine, une résine fixatrice des acides biliaires, entraîne des effets hypocholestérolémiants additifs.

1

¹ Non commercialisée au Canada

² Non commercialisée au Canada

Lorsque la lovastatine est administrée avec de la cholestyramine ou toute autre résine, il faut espacer la prise des deux médicaments d'au moins deux heures car l'absorption de la lovastatine peut être affectée par la résine.

Gemfibrozil, autres fibrates et niacine (acide nicotinique) utilisée à des doses hypolipidémiantes (≥ 1 g/jour) : Ces médicaments administrés conjointement avec la lovastatine entraînent une augmentation du risque de myopathie, probablement parce qu'ils peuvent causer une myopathie lorsqu'ils sont administrés seuls (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles). Aucune donnée ne laisse présumer que ces médicaments modifient la pharmacocinétique de la lovastatine.

Des cas de myopathie, incluant une rhabdomyolyse, sont survenus chez des patients qui recevaient un traitement associant la lovastatine avec des fibrates ou de la niacine, notamment chez les sujets atteints d'insuffisance rénale préexistante (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles).

Inhibiteurs de l'enzyme de conversion de l'angiotensine : Une hyperkaliémie associée à une myosite (myalgie et hausse de la CK) a été rapportée chez un seul patient qui présentait un diabète insulinodépendant et une légère insuffisance rénale et qui recevait la lovastatine conjointement avec un inhibiteur de l'enzyme de conversion de l'angiotensine (lisinopril).

Anticoagulants coumariniques: On a rapporté quelquefois des signes cliniques évidents d'hémorragie ou une augmentation du temps de prothrombine, ou ces deux réactions à la fois, chez les patients qui prenaient conjointement des anticoagulants coumariniques et de la lovastatine. Pour les patients qui prennent des anticoagulants, on recommande de mesurer le temps de prothrombine avant de commencer un traitement avec la lovastatine et de répéter par la suite ces analyses au début du traitement à une fréquence suffisante pour éviter des variations importantes du temps de prothrombine. Une fois que le temps de prothrombine stabilisé est établi, on peut mesurer cette constante aux intervalles habituellement recommandés lors d'un traitement avec des anticoagulants coumariniques. Chaque fois que la dose de lovastatine est modifiée, on doit recommencer le même processus. Chez les patients qui ne prennent pas d'anticoagulants, le traitement à la lovastatine n'a pas entraîné d'hémorragies ni de modifications du temps de prothrombine.

Danazol, vérapamil ou diltiazem : Le risque de myopathie et de rhabdomyolyse augmente lors de l'administration concomitante de danazol, vérapamil ou diltiazem, en particulier avec de fortes doses de lovastatine (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles).

Digoxine : L'administration conjointe de lovastatine et de digoxine chez des patients atteints d'hypercholestérolémie n'a entraîné aucun effet sur les concentrations plasmatiques de digoxine.

Bêta-bloquants : L'administration conjointe de propranolol et de lovastatine chez des volontaires en bonne santé a provoqué une légère diminution de l'aire sous la courbe de la lovastatine et de ses métabolites, de même qu'une réduction importante de la C_{max} des métabolites de la lovastatine.

Cependant, aucune interaction importante sur le plan clinique n'a été rapportée chez les patients qui avaient reçu conjointement la lovastatine et un bêta-bloquant.

Il se peut que les patients à qui l'on administre d'autres médicaments reconnus pour leur effet inhibiteur modéré sur le CYP3A4 conjointement à la lovastatine, en particulier lorsqu'ils sont administrés avec des doses élevées de lovastatine, présentent un risque accru de myopathie.

Amiodarone: Le risque de myopathie et de rhabdomyolyse augmente lors de l'administration concomitante d'amiodarone et de fortes doses d'un inhibiteur de l'HMG-CoA réductase étroitement apparenté (voir MISES EN GARDE ET PRÉCAUTIONS, Myopathie/rhabdomyolyse causée par une interaction médicamenteuse).

Inhibiteurs modérés de CYP3A4: Les patients qui prennent d'autres médicaments identifiés comme ayant un effet inhibiteur modéré du CYP3A4 conjointement avec la lovastatine, particulièrement les fortes doses de lovastatine, peuvent présenter un risque plus élevé de myopathie (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles).

Association avec d'autres traitements : Bien qu'aucune étude spécifique n'ait été effectuée sur les interactions médicamenteuses, la lovastatine a été, au cours des études cliniques, administré conjointement avec un certain nombre de diurétiques et d'anti-inflammatoires non stéroïdiens (AINS) et des hypoglycémiants (chlorpropamide, glipizide, glyburide, insuline), sans que l'on ait pu observer à ce jour d'interaction médicamenteuse significative sur le plan clinique.

Interactions médicament-aliment

Le jus de pamplemousse contient au moins une substance qui inhibe le CYP3A4 et qui peut augmenter le taux plasmatique des médicaments métabolisés par le CYP3A4. L'effet d'une consommation normale de jus de pamplemousse (un verre de 250 mL par jour) est minime (augmentation de 34 % de l'activité inhibitrice exercée sur l'HMG-CoA réductase dans le plasma, d'après l'aire sous la courbe de la concentration en fonction du temps) et n'a aucune portée clinique. Cependant, on devrait éviter de consommer du jus de pamplemousse pendant le traitement à la lovastatine car de grandes quantités (plus de 1 litre par jour) peuvent entraîner une augmentation significative de l'activité inhibitrice à l'égard de l'HMG-CoA réductase dans le plasma.

Effets du médicament sur les constantes biologiques

La lovastatine peut provoquer une augmentation des taux sériques de créatine kinase et de transaminases (voir EFFETS INDÉSIRABLES, Analyses de laboratoire). Dans le diagnostic différentiel d'une douleur thoracique chez un patient traité avec PRO-LOVASTATIN, on devrait déterminer la proportion d'enzymes d'origine cardiaque et non cardiaque.

POSOLOGIE ET ADMINISTRATION

Considérations posologiques

- Avant de recevoir PRO-LOVASTATIN (lovastatine), les patients devraient être traités au moyen d'un régime alimentaire hypocholestérolémiant, qu'ils devront poursuivre pendant le traitement médicamenteux. Un programme de maîtrise du poids et d'exercices physiques devrait également être instauré si l'on juge ces mesures appropriées.
- Avant d'instaurer un traitement avec PRO-LOVASTATIN, on doit éliminer les causes secondaires pouvant être à l'origine de la hausse des taux de lipides, et effectuer un bilan lipidique.
- Patients atteints d'hypercholestérolémie: La dose initiale habituelle est de 20 mg par jour, prise en une seule fois avec le repas du soir. On a constaté que la dose administrée avec le repas du soir était plus efficace que la même dose prise avec le repas du matin. Le réglage de la posologie, s'il est nécessaire, devrait être réalisé à intervalles d'au moins 4 semaines; la posologie maximale ne doit pas excéder 80 mg par jour, administrés en dose unique ou en doses fractionnées avec les repas du matin et du soir (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES). Les doses fractionnées (c'est-à-dire 2 fois par jour) peuvent se révéler légèrement plus efficaces que les doses quotidiennes uniques.
- Patients atteints d'hypercholestérolémie grave : Chez les patients atteints d'hypercholestérolémie grave, il peut être nécessaire d'administrer des doses élevées, soit 80 mg par jour (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES). On doit procéder périodiquement à une évaluation du taux de cholestérol et envisager la possibilité de réduire la posologie de PRO-LOVASTATIN si les concentrations de cholestérol atteignent des valeurs inférieures aux valeurs souhaitées.
- Patients atteints de maladie coronarienne établie : Dans les études menées auprès de patients atteints de maladie coronarienne qui ont reçu PRO-LOVASTATIN administré seul ^{4,7,49} ou avec du colestipol (étude FATS [Familial Atherosclerosis Treatment Study]), les posologies utilisées variaient entre 20 et 80 mg par jour, pris en dose unique ou en doses fractionnées. Dans les deux études où lovastatine a été utilisé en monothérapie, la dose a été réduite lorsque le taux plasmatique de cholestérol total atteignait une valeur inférieure à 2,85 mmol/L ou lorsque le taux de LDL-C était inférieur à 2,1 mmol/L.
- Traitement concomitant: (Voir INTERACTIONS MÉDICAMENTEUSES, Association avec d'autres régulateurs du métabolisme lipidique.)
 Chez les patients prenant du danazol, du vérapamil, du diltiazem ou des fibrates (autre que le gemfibrozil) ou de la niacine administrée à des doses hypolipidémiantes (≥ 1 g/jour) en association avec PRO-LOVASTATIN, la dose de PRO-LOVASTATIN ne doit pas excéder 20 mg par jour. Chez les patients prenant de l'amiodarone en association avec PRO-LOVASTATIN la dose de PRO-LOVASTATIN ne doit pas excéder 40 mg par jour (voir MISES EN GARDE ET PRÉCAUTIONS, Effets sur les muscles et INTERACTIONS MÉDICAMENTEUSES).

La posologie de PRO-LOVASTATIN doit être établie pour chaque patient en fonction des valeurs initiales du LDL-C, du rapport cholestérol total/HDL-C ou des triglycérides, ou de ces trois paramètres à la fois, en vue d'atteindre les valeurs souhaitées recommandées avec la dose la plus faible possible et en fonction de la réponse du patient. Il importe d'effectuer périodiquement un bilan lipidique et de régler, au besoin, la posologie de PRO-LOVASTATIN en fonction des valeurs souhaitées.

Dose oubliée

Si le patient oublie de prendre un comprimé, il doit le prendre dès qu'il s'aperçoit de l'oubli, à moins que cette dose ne se trouve trop rapprochée de la suivante; il ne doit prendre alors que la dose prescrite au moment indiqué. Il ne faut pas prendre une double dose.

SURDOSAGE

Aucune réaction défavorable importante sur le plan clinique n'a été mise en évidence chez cinq volontaires en bonne santé qui avaient reçu jusqu'à 200 mg de lovastatine en une seule dose. On a rapporté quelques cas de surdosage accidentel; aucun de ces patients n'a présenté de symptôme particulier et tous se sont rétablis sans séquelles. La dose maximale était de 5 à 6 g.

En cas de surdosage, il faut avoir recours à un traitement d'appoint axé sur la suppression des symptômes, surveiller la fonction hépatique et instaurer les mesures thérapeutiques appropriées. Étant donné le peu d'expérience acquise à ce jour, on n'a pas encore établi de traitement spécifique du surdosage.

On ne sait pas si la lovastatine et ses métabolites peuvent être éliminés par hémodialyse chez l'humain.

En cas de surdosage soupçonné, communiquez immédiatement avec le centre antipoison de votre région.

MODE D'ACTION ET PHARMACOLOGIE CLINIQUE

Mode d'action

La lovastatine est une substance hypocholestérolémiante qui a été isolée à partir d'une souche d'*Aspergillus terreus*. Après son ingestion, la lovastatine, une lactone inactive, est hydrolysée sous forme d'acide β-hydroxylé. Ce principal métabolite est un inhibiteur spécifique de l'hydroxy-3 méthyl-3 glutaryl coenzyme A (HMG-CoA) réductase.

L'enzyme régulatrice HMG-CoA réductase catalyse la conversion de l'HMG-CoA en mévalonate; cette conversion appelée étape limitante se produit au début de la synthèse du cholestérol et en limite la vitesse.

Pharmacodynamie

La lovastatine réduit la production de cholestérol par le foie et provoque certaines modifications dans le transport et la distribution du cholestérol dans le sang et les tissus. Les mécanismes qui commandent cet effet semblent entraîner à la fois une réduction de la synthèse des lipoprotéines de basse densité (LDL) et une augmentation du catabolisme des LDL en réponse à un accroissement du nombre des récepteurs hépatiques des LDL.

Pharmacocinétique

La lovastatine possède une pharmacocinétique complexe (voir PHARMACOLOGIE DÉTAILLÉE).

Métabolisme : La lovastatine est métabolisée par les enzymes hépatiques microsomales (isoforme 3A4 du système cytochrome P₄₅₀). Les principaux métabolites actifs de la lovastatine retrouvés dans le plasma humain sont l'acide β-hydroxylé et les dérivés 6-hydroxylé, 6-hydroxyméthylé et 6-exométhylène (voir PHARMACOLOGIE DÉTAILLÉE, Pharmacocinétique).

ENTREPOSAGE ET STABILITÉ

Conserver entre 15°C et 30°C et à l'abri de la lumière. Garder la bouteille fermée hermétiquement. Garder les plaquettes alvéolées dans leur emballage de carton extérieur jusqu'à ce que tous les comprimés aient été utilisés.

FORMES POSOLOGIQUES, COMPOSITION ET CONDITIONNEMENT

Comprimé à 20 mg:

Chaque comprimé bleu clair, de forme octogonale, plat, aux bords biseautés, portant l'inscription « LOVA » et « 20 » de part et autre de la ligne sécable sur un côté et rien de l'autre contient 20 mg de lovastatine et les ingrédients non médicinaux suivants : amidon prégélifié, hydroxyanisol butylé, cellulose microcristalline, FD&C bleu n° 1 sur substrat d'aluminium, FD&C bleu n° 2 sur substrat d'aluminium, lactose, et stéarate de magnésium. Disponibles en plaquette alvéolée de 30 comprimés et en flacon de 100 comprimés.

Comprimé à 40 mg:

Chaque comprimé vert, de forme octogonale, plat, aux bords biseautés, portant l'inscription « LOVA 40 » sur un côté et rien de l'autre contient 40 mg de lovastatine et les ingrédients non médicinaux suivants : amidon prégélifié, hydroxyanisol butylé, cellulose microcristalline, D&C jaune n° 10 sur substrat d'aluminium, FD&C bleu n° 2 sur substrat d'aluminium, lactose, et stéarate de magnésium. Disponibles en plaquette alvéolée de 30 comprimés et en flacon de 100 comprimés.

PARTIE II: RENSEIGNEMENTS SCIENTIFIQUES

RENSEIGNEMENTS PHARMACEUTIQUES

Substance pharmaceutique

Dénomination commune: Lovastatine

Nom chimique: $[1S-[1\alpha(R^*),3\alpha,7\beta,8\beta(2S^*,4S^*),8a\beta]]-1,2,3,7,8,8a-hexahydro-$

3,7- diméthyl-8-[2-(tétrahydro-4-hydroxy-6-oxo-2*H*-pyran-2-

yl)éthyl]-1-naphtalényl 2-méthylbutanoate

Formule développée :

$$H_3C$$
 H_3C
 H_3C

Formule moléculaire : $C_{24}H_{36}O_5$

Poids moléculaire : 404,55 g/mol

Description : La lovastatine se présente sous forme de poudre cristalline

blanche, inodore et non hygroscopique.

Solubilité : Solvants Solubilité (mg/mL)

 Acétonitrile
 28

 Éthanol
 16

 Méthanol
 28

 Eau
 0,44 x 10⁻³

Le coefficient de partage Kp (concentration en phase organique/concentration en phase aqueuse) de la lovastatine dans un mélange d'alcool octylique et d'eau (tampon phosphate, pH 7) est de $(1,2\pm0,9)$ x 10^4 .

Conditions d'entreposage: Protéger de la lumière et conserver dans des contenants

hermétiquement scellés sous azote à moins de 8°C.

ESSAIS CLINIQUES

Études comparatives de biodisponibilité

Une étude comparative de biodisponibilité comparant les comprimés PRO-LOVASTATIN 40 mg fabriqués pour Pro Doc Ltée, versus les comprimés MEVACOR^{MC} 40 mg fabriqués par Merck Frosst Std. Canada, a été menée sous condition de jeûne. Les données de biodisponibilité ont été mesurées et les résultats sont résumés dans le tableau ci-dessous:

SOMMAIRE DES DONNÉES COMPARATIVES DE BIODISPONIBILITÉ

Lovastatine (1 x 40mg) De données mesurées

Moyenne géométrique Moyenne arithmétique (CV %)

Paramètre	PRO-LOVASTATIN	MEVACOR ^{MC}	Rapport des moyennes géométriques (%)	Intervalle de confiance (90%)
ASC _T (ng·h/mL)	30,574 37,268 (56,35)	29,186 36,701 (69,37)	105	95-115
ASC _I (ng·h/mL)	36,866 45,495 (60,87)	38,130 48,749 (78,16)	97	85-109
C _{MAX} (ng/mL)	3,069 3,606 (54,54)	2,952 3,298 (47,94)	104	92-118
T _{MAX} § (h)	4,56 (82,43)	4,62 (82,75)		
T _{1/2} [§] (h)	13,71 (107,64)	14,28 (64,17)		

Pour T_{max} et T_{1/2}, représenté sous forme de moyenne arithmétique seulement.

Études cliniques

La lovastatine s'est révélé très efficace pour abaisser les taux de cholestérol total et de LDL-C chez les patients présentant une hypercholestérolémie familiale de forme hétérozygote, une hypercholestérolémie non familiale ou une hyperlipidémie mixte. La réponse au traitement a été obtenue en moins de 2 semaines et l'effet thérapeutique maximal est survenu entre 4 et 6 semaines. La réponse obtenue s'est maintenue durant tout le traitement. Les doses prises une fois par jour le soir se sont révélées plus efficaces que les doses correspondantes prises le matin, probablement en raison du fait que la synthèse du cholestérol survient principalement la nuit. À l'arrêt du traitement avec la lovastatine le taux de cholestérol total est revenu aux valeurs initiales.

Chez les patients qui présentent une hypercholestérolémie familiale de forme hétérozygote, on n'obtient généralement pas une réduction optimale du cholestérol total et du LDL-cholestérol et

on doit habituellement recourir à une association médicamenteuse (voir RÉFÉRENCES). (Pour l'hypercholestérolémie familiale de forme homozygote, voir MISES EN GARDE ET PRÉCAUTIONS, Utilisation dans l'hypercholestérolémie familiale homozygote).

Des études cliniques multicentriques, menées à double insu auprès de plus de 200 patients atteints d'hypercholestérolémie familiale ou non familiale, ont permis de comparer la lovastatine à un placebo; la posologie variait entre 20 mg administrés une fois par jour avec le repas du soir et 40 mg administrés 2 fois par jour. Dans ces études, la lovastatine a abaissé, d'une façon constante et statistiquement significative (p < 0,01), le cholestérol total (C TOTAL), le LDL-cholestérol (LDL-C), le rapport cholestérol total/HDL-cholestérol (C TOTAL/HDL-C) et le rapport LDL-cholestérol/HDL-cholestérol (LDL-C/HDL-C). De plus, la lovastatine a entraîné une augmentation du HDL-cholestérol (HDL-C), une diminution du VLDL-cholestérol (VLDL-C) et des triglycérides plasmatiques (TG) (voir les tableaux 1 et 2 pour la réponse en fonction de la dose).

Tableau 1 – Hypercholestérolémie familiale : Réponse en fonction de la dose de la lovastatine

(Variation en % après 6 semaines de traitement, par rapport aux valeurs initiales)

		C TOTAL	LDL-C	HDL-C	LDL-C/ HDL-C	C TOTAL/ HDL-C	TG
POSOLOGIE	N	(moyenne)	(moyenne)	(moyenne)	(moyenne)	(moyenne)	(médiane)
Placebo	21	-1	-2	+1	-1	0	+3
Lovastatine							
20 mg ,1 f.p.j au souper.	20	-18	-19	+10	-26	-24	-7
40 mg ,1 f.p.j. au souper	21	-24	-27	+10	-32	-29	-22
10 mg, 2 f.p.j.	18	-22	-25	+6	-28	-25	-11
20 mg, 2 f.p.j.	19	-27	-31	+12	-38	-34	-18
40 mg, 2 f.p.j.	20	-34	-39	+8	-43	-38	-12

Tableau 2 - Hypercholestérolémie non familiale : Réponse en fonction de la dose de la lovastatine (Variation en % après 6 semaines de traitement, par rapport aux valeurs initiales)

LDL-C/ C TOTAL/ HDL-C HDL-C C TOTAL LDL-C HDL-C VLDL-C TG **POSOLOGIE** N (movenne) (movenne) (movenne) (movenne) (movenne) (médiane) (médiane) Placebo 20 +9 -3 +5 +4 +7 +3 -14 Lovastatine -30^{††} 20 mg, 1 f.p.j. 19 -18 -22 -29 -24 -17 +11au souper 40 mg, 1 f.p.j. -31[†] 20 -19 -21 -20 -19 -20 +4 au souper -2†† 19 10 mg, 2 f.p.j. -18 -24 -25 -20 -15 +3 20 mg, 2 f.p.j. 17 -29 -36 -31 -31[†] -23 -34 +6 -31^{††} 40 mg, 2 f.p.j. 20 -32 -39 +13-46 -39 -27

$†$
N = 17
 †† N = 18

On a comparé la lovastatine à la cholestyramine dans une étude au su menée en mode parallèle,

auprès de patients souffrant d'hypercholestérolémie et présentant un risque élevé d'infarctus du myocarde. Les résultats obtenus ont montré que la lovastatine entraînait, à toutes les doses, des réductions du cholestérol sérique total, du LDL-cholestérol, du VLDL-cholestérol, des triglycérides et du rapport cholestérol total/HDL-cholestérol significativement plus importantes que celles produites par la cholestyramine. Par ailleurs, l'augmentation du taux de HDL-cholestérol observée avec la lovastatine a été semblable à celle obtenue avec la cholestyramine (voir le tableau 3).

Table 3 - Lovastatine vs Cholestyramine

(Variation en % après 12 semaines de traitement, par rapport aux valeurs initiales)

DOSAGE	N	C TOTAL (moyenne)	LDL-C (moyenne)	HDL-C (moyenne)	LDL-C/ HDL-C (moyenne)	C TOTAL/ HDL-C (moyenne)	VLDL-C (médiane)	TG (médiane)
Lovastatine								
20 mg, 2 f.p.j.	85	-27	-32	+9	-36	-31	-34	-21
40 mg, 2 f.p.j.	88	-34	-42	+8	-44	-37	-31	-27
Cholestyramine								
12 g ,2 f.p.j.	88	-17	-23	+8	-27	-21	+2	+11

L'étude EXCEL (Expanded Clinical Evaluation of Lovastatin) visait à comparer la lovastatine à un placebo chez 8 245 patients présentant une hypercholestérolémie, soit un taux de cholestérol total situé entre 6,2 et 7,8 mmol/L et un taux de LDL-cholestérol > 4,1 mmol/L. Il s'agissait d'une étude à double insu, avec répartition au hasard, menée en mode parallèle, d'une durée de 48 semaines. Les patients admis à l'étude pouvaient présenter d'autres facteurs de risque ou des antécédents de maladie coronarienne. La lovastatine a été le seul hypolipidémiant utilisé chez presque tous les patients de l'étude. Les taux plasmatiques de cholestérol total, de LDL-C, de HDL-C et de triglycérides ont été évaluées; les variations obtenues étaient reliées à la dose et correspondaient aux valeurs observées dans les études cliniques initiales. Elles différaient de façon significative du groupe placebo (p≤ 0,001) (voir le tableau 4).

Tableau 4 – Lovastatine vs Placebo

(Variation en % par rapport aux valeurs initiales - Valeurs moyennes obtenues entre la 12^e et la 48^e semaine)

POSOLOGIE	N*	C TOTAL (moyenne)	LDL-C (moyenne)	HDL-C (moyenne)	LDL-C/ HDL-C (moyenne)	C TOTAL/ HDL-C (moyenne)	TG (médiane)
Placebo	1663	+0,7	+0,4	+2,0	+0,2	+0,6	+4
Lovastatine							
20 mg (avec le repas du soir)	1642	-17	-24	+6,6	-27	-21	-10
40 mg (avec le repas du soir)	1645	-22	-30	+7,2	-34	-26	-14
20 mg, 2 f.p.j.	1646	-24	-34	+8,6	-38	-29	-16
40 mg, 2 f.p.j.	1649	-29	-40	+9,5	-44	-34	-19

^{*} Patients admis à l'étude

Les effets du traitement avec la lovastatine sur l'athérosclérose coronarienne ont été évalués dans trois études menées à double insu, avec répartition au hasard et contrôlées par placebo, d'une

durée de 2 à 2,5 ans. Les angiogrammes analysés par coronarographie numérique montraient que tous les patients étaient atteints d'athérosclérose coronarienne.

Dans la première étude⁴⁹, les effets de la lovastatine à la posologie de 20 à 80 mg par jour ont été évalués chez 331 patients dont le taux sérique de cholestérol total se situait entre 5,70 et 7,77 mmol/L. La lovastatine a entraîné un ralentissement significatif de la progression des lésions et une réduction du nombre de patients présentant de nouvelles lésions. Cet effet, cependant, ne s'est pas traduit par des résultats plus favorables concernant les paramètres cliniques (décès, infarctus du myocarde fatal et non fatal, hospitalisation en raison d'un angor instable et intervention de revascularisation coronarienne) pendant la période de traitement d'une durée de 2 ans (voir INDICATIONS ET USAGE CLINIQUE).

Dans la deuxième étude ^{4,7}, les effets du traitement avec la lovastatine à la posologie de 40 mg, 2 fois par jour, ont été évalués chez 270 patients dont le taux sérique de cholestérol total se situait entre 4,92 et 7,64 mmol/L. L'évaluation par coronarographie numérique n'a pas fait ressortir de différence significative sur le plan statistique entre les groupes quant à la variation du pourcentage de sténose pour l'ensemble des lésions (le principal paramètre de l'étude). Toutefois, les angiogrammes ont également fait l'objet d'une évaluation par un comité d'experts qui ont déterminé par consensus le changement global constaté à l'angiographie, soit la cote de modification globale (l'un des paramètres secondaires de l'étude). Cette méthode a permis de démontrer que la lovastatine a ralenti de façon significative la progression de la maladie et a favorisé une régression des lésions chez un nombre deux fois plus élevé de patients. Aucune différence n'a été observée quant au nombre d'événements cliniques survenus durant les 2,2 ans du traitement mené à double insu (voir INDICATIONS ET USAGE CLINIQUE).

Les études précitées n'avaient pas été conçues et n'avaient pas la puissance statistique nécessaire pour mettre en évidence une réduction du risque de morbidité et de mortalité d'origine coronarienne, ainsi que du risque de mortalité générale.

Dans la troisième étude (étude FATS [Familial Atherosclerosis Treatment Study]), les effets du traitement associant la lovastatine et le colestipol ont été évalués chez 98 patients ayant des antécédents familiaux de maladie vasculaire précoce et dont le taux d'apolipoprotéines B était ≥ 1,3 g/L et le taux moyen de cholestérol total était de 6,99 mmol/L. La lovastatine et le colestipol ont réduit de façon significative la fréquence des lésions coronariennes en progression et ont augmenté la fréquence des lésions en régression.

L'effet de la lovastatine sur la progression des plaques athéroscléreuses dans les artères coronaires a été corroboré par des résultats similaires obtenus dans d'autres vaisseaux sanguins. Dans l'étude ACAPS (Asymptomatic Carotid Artery Plaque Study), l'effet de la lovastatine sur l'athérosclérose carotidienne a été évalué au moyen de l'échographie bidimensionnelle chez un groupe de patients présentant des lésions carotidiennes asymptomatiques précoces et un taux sérique de cholestérol total moyen de 6,1 mmol/L (235 mg/dL), mais n'ayant pas de maladie coronarienne établie. Dans cette étude clinique contrôlée menée à double insu, les 919 patients ont été répartis au hasard selon un plan factoriel 2 x 2 pour recevoir de la lovastatine à raison de 10 à 40 mg par jour ou un placebo, accompagnés de warfarine ou d'un placebo de warfarine. L'échographie des parois carotidiennes a permis de mesurer chez chaque patient, au début de

l'étude et après trois ans, les variations de l'épaisseur maximale moyenne de l'intima et du média (EIM) de 12 segments artériels.

On a observé une régression significative des lésions carotidiennes chez les patients recevant la lovastatine seule en comparaison des patients recevant un placebo. On n'a pas encore établi la valeur prédictive des variations de l'épaisseur de l'intima et du média en ce qui concerne la survenue des accidents vasculaires cérébraux. Dans le groupe traité avec la lovastatine, on a observé une réduction significative du nombre de patients ayant subi un événement cardiovasculaire grave (5 contre 14, p=0,04) et une réduction significative de la mortalité toutes causes (1 contre 8, p=0,02), comparativement au groupe placebo. Cet essai vient corroborer les données des essais précités. Il n'a toutefois pas la puissance statistique nécessaire pour mettre en évidence une réduction du risque de morbidité et de mortalité d'origine coronarienne. Une étude plus vaste et plus longue s'impose pour évaluer l'effet d'une monothérapie avec la lovastatine sur les événements cliniques (voir MISES EN GARDE ET PRÉCAUTIONS, INDICATIONS ET USAGE CLINIQUE et RÉFÉRENCES).

La lovastatine s'est révélé efficace chez des patients atteints de diabète insulinodépendant (type 1) ou non insulinodépendant (type 2) sans complication et bien équilibré, et présentant aussi une hypercholestérolémie primitive. Les réductions des taux plasmatiques de lipides chez ces patients ont été comparables à celles qui ont été notées chez les patients non diabétiques. La glycémie n'a pas été modifiée.

Dans une étude contrôlée menée chez des patients de plus de 60 ans, la lovastatine a été aussi efficace que dans la population générale. En outre, on n'a pas noté de différences dans la fréquence des réactions défavorables, tant sur le plan clinique qu'au niveau des résultats des tests de laboratoire.

PHARMACOLOGIE DÉTAILLÉE

Pharmacologie chez l'humain

La lovastatine réduit les concentrations normales et élevées de LDL-C. On ne connaît pas encore l'effet des changements attribuables à la lovastatine à l'égard des taux de lipoprotéines, telle la réduction du cholestérol sérique, sur la morbidité et la mortalité cardiovasculaires ainsi que sur la mortalité générale.

Les LDL proviennent des VLDL et sont catabolisées principalement grâce aux récepteurs des LDL qui ont une grande affinité pour ces particules. Le mécanisme par lequel la lovastatine réduit le taux des LDL pourrait mettre en jeu une diminution du VLDL-cholestérol et une augmentation des récepteurs des LDL, ce qui entraînerait une diminution de la production ou une augmentation du catabolisme du LDL-cholestérol, ou ces deux effets à la fois.

On observe une baisse substantielle des apolipoprotéines B au cours du traitement avec la lovastatine. Étant donné que chaque particule de LDL contient une molécule d'apolipoprotéine B et que l'apolipoprotéine B n'est présente qu'en faible quantité dans les autres lipoprotéines, ceci permet de présumer que la lovastatine n'entraîne pas simplement une baisse du cholestérol

provenant des LDL, mais également une réduction du nombre des particules de LDL en circulation. Cependant, au cours d'un traitement avec la lovastatine la possibilité d'un changement dans la composition de la particule de LDL (rapport lipide/protéine) ne doit pas être exclue. La lovastatine provoque par ailleurs une légère hausse du HDL-cholestérol, de même qu'une baisse du VLDL-cholestérol et des triglycérides plasmatiques (voir les tableaux 1 à 4 sous ÉTUDES CLINIQUES).

La forme active de la lovastatine inhibe spécifiquement et de façon réversible l'HMG-CoA réductase, l'enzyme qui catalyse la conversion de l'HMG-CoA en mévalonate. Cependant, aux doses thérapeutiques, l'enzyme n'est pas complètement inhibée, ce qui permet la production de quantités suffisantes de mévalonate pour répondre aux besoins métaboliques. Étant donné que la conversion de l'HMG-CoA en mévalonate est l'une des premières étapes de la biosynthèse du cholestérol, le traitement avec la lovastatine ne devrait pas favoriser l'accumulation de stérols pouvant être toxiques.

Bien que le cholestérol soit le précurseur de l'ensemble des hormones stéroïdes, il a été démontré que la lovastatine, aux doses thérapeutiques, n'avait aucun effet sur la stéroïdogenèse (voir MISES EN GARDE ET PRÉCAUTIONS, Fonction endocrinienne et métabolisme, Fonction endocrinienne).

Pharmacocinétique

La lovastatine est une lactone rapidement hydrolysée *in vivo* en l'acide β-hydroxylé correspondant, un inhibiteur puissant de l'HMG-CoA réductase. Dans les études pharmacocinétiques, l'inhibition de l'HMG-CoA réductase est l'étape qui sert de base aux dosages des métabolites acides β-hydroxylés (inhibiteurs actifs) et, après hydrolyse, aux dosages des inhibiteurs actifs et latents (inhibiteurs totaux), les deux étant mesurés dans le plasma après l'administration de la lovastatine.

À la suite de l'administration chez l'humain d'une dose orale de lovastatine marquée au ¹⁴C, 10 % de la dose a été retrouvée dans l'urine et 83 % dans les fèces. Ce dernier pourcentage représente le médicament absorbé qui est excrété dans la bile ainsi que les fractions non absorbées. En raison d'une forte extraction hépatique, la biodisponibilité générale de la lovastatine est faible et variable. Moins de 5 % de la dose administrée par voie orale se retrouve dans le sang sous forme d'inhibiteurs actifs. Avec l'administration de comprimés de lovastatine, le coefficient de variation entre les sujets était d'environ 40 % pour l'aire sous la courbe évaluant l'activité inhibitrice totale dans la grande circulation.

La lovastatine, de même que son métabolite acide \(\beta\)-hydroxylé, a une grande capacité de fixation aux protéines plasmatiques (> 95 %) chez l'humain. Les études réalisées chez les animaux ont montré que la lovastatine traversait les barrières hémato-encéphalique et placentaires.

La lovastatine est métabolisée par les enzymes hépatiques microsomales (isoforme 3A4 du cytochrome P₄₅₀). Les principaux métabolites actifs de la lovastatine retrouvés dans le plasma humain sont l'acide β-hydroxylé et les dérivés 6-hydroxylé, 6-hydroxyméthylé et 6-exométhylène. Les concentrations plasmatiques maximales pour les inhibiteurs actifs et les inhibiteurs totaux ont été atteintes 2 à 4 heures après l'administration par voie orale. Bien que les

doses thérapeutiques recommandées soient de 20 à 80 mg par jour, la linéarité de l'activité inhibitrice dans la circulation générale a été confirmée dans le cadre d'une étude où la lovastatine était administrée par voie orale, en doses uniques variant de 60 à 120 mg. Après l'administration répétée du médicament en doses monoquotidiennes, les concentrations plasmatiques des inhibiteurs totaux observées au cours d'un intervalle posologique ont atteint un état d'équilibre après 2 ou 3 jours de traitement; les concentrations étaient environ 1,5 fois supérieures à celles obtenues avec l'administration d'une dose unique. Avec l'administration de lovastatine à des sujets à jeun, les concentrations plasmatiques des inhibiteurs actifs et totaux étaient égales aux deux tiers environ de celles qui avaient été obtenues avec la lovastatine administrée immédiatement après un repas d'épreuve standard.

Lors d'une étude menée chez des patients atteints d'insuffisance rénale grave (clairance de la créatinine comprise entre 0,167 et 0,5 mL/s [10 et 30 mL/min]), les concentrations plasmatiques des inhibiteurs totaux après l'administration d'une seule dose de lovastatine ont été environ deux fois plus élevées que celles qui avaient été observées chez des volontaires en bonne santé.

Bien que le mécanisme exact ne soit pas encore parfaitement élucidé, on croit que la cyclosporine augmente l'aire sous la courbe de la forme acide de la lovastatine en partie en raison de son action inhibitrice sur le CYP3A4.

Le risque de myopathie augmente en présence d'une forte activité inhibitrice à l'égard de l'HMG-CoA réductase dans le plasma. La prise de puissants inhibiteurs du CYP3A4 peut augmenter l'activité inhibitrice exercée sur l'HMG-CoA réductase dans le plasma et accroître le risque de myopathie (voir MISES EN GARDE ET PRÉCAUTIONS, Myopathie/rhabdomyolyse et INTERACTIONS MÉDICAMENTEUSES).

Pharmacologie chez l'animal

Cultures cellulaires : En utilisant une lignée de fibroblastes de souris (cellules L-M) et une lignée d'hépatocytes de rats (cellules GAI), on a démontré que la lovastatine inhibe efficacement et de façon réversible la synthèse des stérols formés à partir d'acétate marqué au ¹⁴C dans les cultures cellulaires.

La lovastatine s'est révélé un puissant inhibiteur de la synthèse des stérols formés à partir d'acétate marqué au ¹⁴C, les valeurs de la CI₅₀ étant égales à 11,1 et 2,7 nM, respectivement. Par contre, pour chacune des lignées cellulaires, l'incorporation du mévalonate marqué au ³H dans les stérols (le mévalonate étant le produit de la réaction catalysée par l'HMG-CoA réductase) n'a pas été modifiée, alors que l'incorporation d'acétate marqué au ¹⁴C dans les acides gras a été légèrement augmentée. De tels résultats démontrent que la lovastatine n'inhibe pas les enzymes qui interviennent dans la biosynthèse du cholestérol après la formation du mévalonate, pas plus qu'elle n'inhibe les enzymes qui contribuent à la formation des acides gras.

Dans le dosage de l'HMG-CoA réductase, l'activité de la lovastatine, qui est une lactone, équivalait à 1/75^e de l'activité de la structure ouverte correspondante, l'acide hydroxylé (forme dans laquelle la lovastatine est convertie après l'administration orale chez l'humain).

Rats

La lovastatine et son métabolite acide à chaîne ouverte ont été administrés à des rats mâles (10 rats/groupe) à des doses comprises entre 0,01 et 1,25 mg/kg. La chaîne ouverte acide s'est révélée plus efficace pour inhiber la synthèse du cholestérol formé à partir d'acétate.

L'administration de lovastatine, à des proportions variant entre 0,003 % et 0,075 % dans le régime alimentaire de rats mâles (10 rats/groupe), a entraîné, après 7 jours, des réductions du cholestérol sérique total de 8 % à 51 % (voir le tableau 5).

Tableau 5 – Réduction du cholestérol sérique chez le rat; pourcentage de réduction en fonction de la proportion de lovastatine dans le régime alimentaire

	Cholestérol sérique (Baisse en % par rapport aux témoins)						
Lovastatine (% dans le régime alimentaire)	Cholestérol total	LDL + VLDL	HDL				
0,00312	-8	-8	+8				
0,00625	-12	-16	+9				
0,0125	-29	-45	+17				
0,025	-28	-50	+13				
0,05	-45	-74	+24				
0,075	-51	-78	+32				

Rats traités pendant 7 jours aux concentrations indiquées de lovastatine (10 rats/groupe). Les animaux étaient soumis à un régime inversé d'éclairage (lumières éteintes à 4 h et allumées à 16 h). Les dosages ont été effectués sur une période de 5 ou 6 heures durant la phase d'obscurité.

Chiens

On a administré *per os*, dans la ration alimentaire de 8 chiens, 8 mg/kg/jour de lovastatine durant 34 jours; 4 chiens ont servi de témoins. L'effet thérapeutique maximal est survenu le 8^e jour du traitement, puis s'est maintenu à un niveau relativement constant durant toute la durée de l'expérience. Le taux de réduction du cholestérol plasmatique a varié de 18,3 % à 42,1 % (moyenne de 27,6 % ± erreur type de 2,8). Les résultats de cette étude apparaissent à la figure 1.

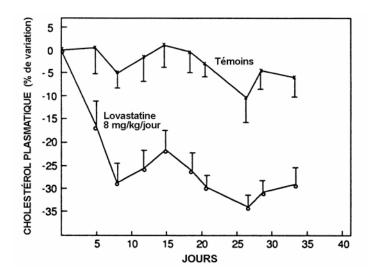


Figure 1 – Effet de la lovastatine sur le taux de cholestérol plasmatique chez le chien

L'administration de cholestyramine, un agent fixateur des acides biliaires, a entraîné chez 4 Beagle mâles, à la dose de 12 g par jour, une baisse moyenne du cholestérol plasmatique total d'environ 35 %, baisse qui s'est maintenue durant toute la durée du traitement.

Deux de ces chiens ont par la suite reçu de la lovastatine, à la dose de 8 mg/kg/jour. Les animaux ont rapidement répondu au traitement, la valeur moyenne du cholestérol passant de 2,39 mmol/L (92,4 mg/dL) avant le traitement à 1,20 mmol/L (46,5 mg/dL) après le traitement. Les résultats obtenus apparaissent à la figure 2.

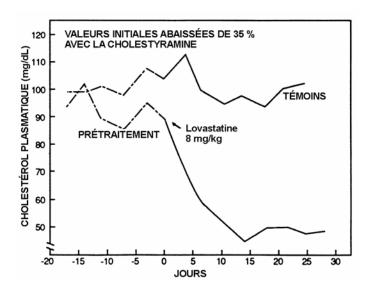


Figure 2 – Baisse du cholestérol plasmatique après l'administration orale de 8 mg/kg/jour de lovastatine à des chiens traités à la cholestyramine (n = 2)

L'addition de lovastatine, à des doses variant de 1 à 8 mg/kg/jour, au régime alimentaire des chiens préalablement traités à la cholestyramine (2 chiens/groupe) s'est traduite par une baisse additionnelle, liée à la dose, du cholestérol plasmatique; les réductions du taux de cholestérol plasmatique, par comparaison avec l'administration de cholestyramine seule, étaient comprises entre 14,2 % (pour la dose de 1 mg/kg/jour) et 49,3 % (pour la dose de 8 mg/kg/jour). Le retrait de la lovastatine a entraîné un retour graduel du cholestérol plasmatique vers les valeurs initiales observées avec la cholestyramine. Dans cette étude, la réponse était proportionnelle au logarithme de la dose.

Lapins

On a administré *per os* (à l'aide d'une sonde gastrique), à quatre lapins mâles hypercholestérolémiques de la souche Watanabe, de la lovastatine à la dose de 6 mg/kg/jour, durant 21 jours; quatre autres lapins hypercholestérolémiques ont servi de témoins. Chez les lapins traités, le taux de cholestérol a été réduit en moyenne de 61,2 % (± 11,0 %), comparativement à 13,6 % chez les lapins témoins.

Le LDL-cholestérol a diminué de façon importante, alors que le HDL-cholestérol est demeuré constant ou a augmenté.

L'administration *per os* de lovastatine à une dose de 20 mg/animal/jour (4 lapins par groupe) a empêché la hausse du LDL-C chez les lapins qui recevaient un régime alimentaire à base de caséine.

Cet effet est dû à la régulation, sur la cellule hépatique, du nombre de sites liant les LDL et à l'augmentation du catabolisme des LDL par le foie.

Pharmacocinétique

La pharmacocinétique de la lovastatine a été étudiée chez la souris, le rat, le chien et le singe. Environ 30 % de la dose administrée par voie orale est absorbée. La lovastatine est rapidement hydrolysée, probablement dans le plasma et dans le foie, en une forme active à chaîne ouverte, l'acide hydroxylé. Chez le chien, la quantité de médicament absorbé qui se retrouve dans la circulation générale (biodisponibilité) est limitée par une forte extraction hépatique de premier passage (site d'action principal probable), les équivalents de médicament étant ultérieurement excrétés dans la bile. Le tableau 6 rend compte des principaux paramètres pharmacocinétiques chez l'animal.

Tableau 6 – Paramètres pharmacocinétiques chez l'animal

		INTRAV	EINEUSE		ORALE	
		DOSE	ASC	DOSE	T_{MAX}	ASC
SOURIS	Lovastatine	0,6	0,38	50	2	8,65
RAT	Lovastatine	0,8	0,776	8	2	1,91
	Métabolite linéaire acide hydroxylé	5	10,4	5	0,5	5,5
CHIEN	Lovastatine	0,8	1,64	8	2	1,4
	Métabolite linéaire acide hydroxylé	5	17,5	5	0,25	16,4
SINGE	Lovastatine	0,8	1,17	8	2	0,82
	Métabolite linéaire acide hydroxylé	5	5,9	5	1	4,1

Les doses sont exprimées en mg/kg.

Les valeurs de l'aire sous la courbe (ASC) sont exprimées en µgEq.h.mL⁻¹ et ont été calculées pour une période de 0-24h

Au cours des études chez l'animal, la lovastatine administrée par voie orale a démontré une très forte sélectivité pour le tissu hépatique, où elle atteint des concentrations nettement plus élevées que dans les autres tissus. La lovastatine subit une forte extraction lors de son premier passage dans le foie, son principal lieu d'action, et est ensuite excrétée dans la bile.

Chez toutes les espèces étudiées, le taux de fixation de la lovastatine et de son métabolite actif à l'albumine plasmatique a été supérieur à 95 %.

Chez le rat, le chien et le singe, le volume apparent de distribution de la lovastatine, administrée *per os*, a été de 5 L/kg, 4 L/kg et 10 L/kg, respectivement. Également chez le rat, le chien et le singe, le volume apparent de distribution du métabolite acide hydroxylé à chaîne ouverte, administré par voie intraveineuse, a été de 2 L/kg, 0,5 L/kg et 18 L/kg, respectivement.

Environ 90 % de la dose de lovastatine administrée par voie orale est retrouvée dans les fèces; moins de 2 % de la dose se retrouve dans l'urine.

TOXICOLOGIE

Toxicité aiguë

Tableau 7

Lovastatine						
Espèce	Sexe	Voie d'administration	DL ₅₀ mg/kg			
			(Domaine de confiance de 95%)			
Rat	Femelle	Orale	>5 000			
Rat	Mâle	Orale	>5 000			
Souris	Femelle	Orale	>20 000			
Souris	Mâle	Orale	>20 000			

Forme linéaire acide hydroxylée à chaîne ouverte de la lovastatine L-154.819

Espèces	Sexe	Voie d'administration	DL ₅₀ mg/kg
			(Limites de confiance 95%)
Souris	Femelle	Orale	1 230-1 380
Souris	Mâle	Orale	1 230-1 380
Souris	Femelle	Intraveineuse	272-287
Souris	Mâle	Intraveineuse	272-287
Rat	Femelle	Orale	≃1 260
Rat	Mâle	Orale	≃1 260
Rat	Femelle	Intrapéritonéale	≃113
Rat	Mâle	Intrapéritonéale	≃113

Toxicité subaiguë et chronique

L'ensemble des effets toxiques produits par la lovastatine chez la souris, le rat, le lapin, le chien et le singe était prévisible en raison de l'amplitude des doses administrées et de la forte activité de la lovastatine sur l'HMG-CoA réductase; ces effets sont énumérés au tableau 8.

Tableau 8 - Lovastatine: Organes cibles évalués dans les études chez l'animal

Organe	Souris	Rat	Lapin	Chien	Singe
Foie, effet néoplasique	+	-	-	-	-
Foie, effet non néoplasique	+	+	+	+	-
Rein	-	-	+	-	-
Vésicule biliaire	-	SO	+	-	-
Estomac (non glandulaire)	+	+	SO	SO	SO
Fœtus	+	+	-	NÉ	NÉ
Œil (cristallin)	-	-	-	+	-
Cerveau (système vasculaire, bandelette optique)	-	-	-	+	-
Testicules	-	-	-	+	-

^{+ =} Organe affecté d'une façon quelconque par le traitement médicamenteux

Le tableau suivant résume les effets défavorables importants observés durant les études visant à évaluer la toxicité à long terme de la lovastatine.

^{- =} Aucun effet observé sur cet organe chez les animaux de cette espèce

NÉ = Non évalué

SO = Sans objet (l'organe n'existe pas chez l'espèce en question)

Tableau 9 – Lovastatine : Effets défavorables importants

1 ableau 9 – Lovastatine : Effets defavorables importants	DOSE MINIMALE	DOSE SANS EFFET
	TOXIQUE (mg/kg/jour)	(mg/kg/jour)
SOURIS		
Tumeurs hépatiques	500	100
Muqueuse gastrique non glandulaire		
Acanthose	100	20
- Papillomes	100	20
Adénome pulmonaire	500	100
RAT		
Modifications morphologiques du foie		
 Altération cellulaire en foyer 	30	5
 Atypie cellulaire 	30	5
Tératologie		
 Malformations du squelette 	800	80
Muqueuse gastrique non glandulaire		
 Acanthose, hyperkératose, œdème sous-muqueux 	200	180
Élévation des transaminases sériques	30	5
LAPIN		
Nécrose hépatocellulaire	100	25
Nécrose tubulaire rénale	100	25
CHIEN		
Décès	180	60
Système nerveux central		
 Dégénérescence vasculaire (associée à des 	180	60
hémorragies en foyer et à un œdème périvasculaire)		
 Dégénérescence de la bandelette optique 	60	30
Cataractes	60	30
Dégénérescence testiculaire	20	5
Élévation des transaminases sériques	20	5

De nombreuses études ont été menées dans le but précis de déterminer la relation entre les effets défavorables de la lovastatine et l'inhibition de l'HMG-CoA réductase, l'objectif étant d'avoir la perspective nécessaire pour évaluer les risques chez l'humain.

Les résultats de ces études sont présentés au tableau 10.

Tableau 10 - Lovastatine : Principaux effets observés au cours des études d'innocuité – Relation avec l'inhibition de l'HMG-CoA réductase

Clairement liés au mécanisme d'action

- Modifications morphologiques du foie chez le rat
- Nécrose hépatique chez le lapin
- Effet tératogène chez le rat
- Hyperplasie de la muqueuse gastrique non glandulaire chez les rongeurs

Fort probablement liés au mécanisme d'action

- Cataractes chez le chien
- Papillomes dans la muqueuse gastrique non glandulaire chez la souris
- Élévation des transaminases sériques chez le rat et le chien
- Nécrose tubulaire rénale chez le lapin

Lien inconnu, mais possible, avec le mécanisme d'action

- Association à une baisse marquée des lipides sanguins
 - Dégénérescence vasculaire et neuronale du SNC chez le chien
- Pas d'association à une baisse marquée des lipides sanguins
 - Tumeurs hépatiques chez la souris
 - Dégénérescence testiculaire chez le chien

Carcinogenèse et mutagenèse

Lors d'une étude de 21 mois visant à évaluer le pouvoir cancérigène de la lovastatine chez la souris, on a observé une hausse statistiquement significative ($p \le 0.05$) de la fréquence des carcinomes et des adénomes hépatocellulaires spontanés, à la dose de 500 mg/kg/jour (312 fois la dose maximale recommandée chez l'humain). Ces effets ne se sont pas manifestés chez la souris à des doses de 20 et de 100 mg/kg/jour (12,5 et 62,5 fois la dose maximale recommandée chez l'humain).

Une hausse significative sur le plan statistique ($p \le 0,05$) de la fréquence des adénomes pulmonaires spontanés a également été observée chez les souris femelles qui avaient reçu des doses de 500 mg/kg/jour (312 fois la dose maximale recommandée chez l'humain); ces changements n'ont pas été constatés chez les souris mâles, quelle que soit la dose administrée, ni chez les souris femelles qui avaient reçu des doses de 20 ou de 100 mg/kg/jour (12,5 ou 62,5 fois la dose maximale recommandée chez l'humain). Puisque la fréquence des tumeurs pulmonaires était comparable à celle obtenue chez les animaux non traités lors d'études de durée similaire, on ne peut établir de lien entre cet effet et le traitement à la lovastatine.

En outre, on a observé une fréquence plus grande de papillomes dans la muqueuse non glandulaire de l'estomac de la souris, aux doses de 100 et de 500 mg/kg/jour (62,5 et 312 fois la dose maximale recommandée chez l'humain); aucune augmentation de la fréquence n'a été constatée à la dose de 20 mg/kg/jour (12,5 fois la dose maximale recommandée chez l'humain). La muqueuse glandulaire de l'estomac n'a pas été affectée. Chez l'humain, l'estomac est formé de la muqueuse glandulaire seulement. Autre fait important, ce changement est fortement associé à une hyperplasie de l'épithélium pavimenteux (acanthose) dans cette région; l'acanthose est un changement caractéristique observé dans la muqueuse non glandulaire des rongeurs traités aux inhibiteurs de l'HMG-CoA réductase, qui est attribuable fort probablement à l'inhibition de la réductase dans ce tissu.

Ce type d'épithélium pavimenteux se retrouve également dans l'œsophage et à la jonction anorectale chez la souris, le rat, le chien et le singe. Une telle réponse hyperplasique d'origine médicamenteuse n'a cependant pu être mise en évidence dans ces deux tissus chez la souris, lors d'études dont la durée pouvait atteindre 21 mois et les doses administrées pouvaient aller jusqu'à 500 mg/kg/jour (312 fois la dose maximale recommandée chez l'humain), ou chez le rat, lors d'une étude d'une durée de 24 mois où les doses administrées étaient de 180 mg/kg/jour (112 fois la dose maximale recommandée chez l'humain).

Aucun effet mutagène n'a été observé lors d'une épreuve de mutagénicité microbienne utilisant des souches mutantes de *Salmonella typhimurium*, avec ou sans activation métabolique à l'aide d'extraits de foie de rat ou de souris. De plus, aucune anomalie génétique n'a été constatée lors d'une analyse *in vitro* par élution alcaline sur des hépatocytes de rat ou de souris, d'une épreuve de mutagénicité sur la souche V-79 de cellules de mammifères, de la recherche d'aberrations chromosomiques *in vitro* sur des cellules CHO ou encore de la recherche d'aberrations chromosomiques *in vivo* sur la moelle osseuse de la souris.

Reproduction et effets tératogènes

Le traitement de rates gravides au moyen de la lovastatine aux doses de 80 et de 400 mg/kg/jour (10 fois et 52 fois la dose maximale recommandée d'après la surface corporelle en mg/m²) a réduit les taux plasmatiques de mévalonate chez le fœtus. Dans des études sur le développement menées chez des rats et des souris, la lovastatine administrée par voie orale à la dose de 80 mg/kg/jour (5 fois et 10 fois la dose maximale recommandée d'après la surface corporelle en mg/m²) n'a pas modifié la fréquence des malformations congénitales. Chez la souris, la lovastatine à la dose orale de 800 mg/kg/jour (47 fois la dose maximale recommandée d'après la surface corporelle en mg/m²) a causé une légère hausse de la fréquence des malformations du squelette, comparativement aux témoins. La fréquence de ces malformations correspond toutefois à ce qui survient spontanément chez cette lignée de souris. Chez le rat, cependant, la dose orale de 800 mg/kg/jour (103 fois la dose maximale recommandée d'après la surface corporelle en mg/m²) a entraîné une fréquence plus élevée de malformations du squelette, en comparaison des témoins. Les résultats d'études subséquentes où la dose de lovastatine administrée pouvait atteindre 800 mg/kg/jour (103 fois la dose maximale recommandée d'après la surface corporelle en mg/m²) ont montré que ces malformations étaient liées à une toxicité maternelle (lésions du pré-estomac liées à une perte de poids maternelle) spécifique aux rongeurs et qu'il est très peu probable que ces manifestations soient dues à un effet direct du médicament sur le fœtus. Aucune malformation n'a été observée chez le lapin à la dose maximale tolérée, à savoir 15 mg/kg/jour (environ 2 fois la dose maximale recommandée d'après la surface corporelle en mg/m²).

Les études chez le rat n'ont démontré aucun effet relié au médicament sur la fertilité des animaux. La lovastatine est excrétée dans le lait des rates.

RÉFÉRENCES

- 1. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J. Mevinolin: A highly-potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 1980;77(7):3957-61.
- 2. Bilheimer DW, Grundy SM, Brown MS, Goldstein JL. Mevinolin and colestipol stimulate receptor-mediated clearance of low-density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci USA 1983;80(13):4124-8.
- 3. Bilheimer DW, Grundy SM, Brown MS, Goldstein JL. Mevinolin stimulates receptor mediated clearance of low-density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Trans Assoc Am Physicians 1983;96:1-9.
- 4. Blankenhorn DH, Azen SP, Kramsch DM, Mack WJ, Cashin-Hemphill L, Hodis HN, DeBoer LWV, Mahrer PR, Masteller MJ, Vailas LI, Alaupovic P, Hirsch LJ, the MARS Research Group. The monitored atherosclerosis regression study (MARS): Coronary angiographic changes with lovastatin therapy. Ann Intern Med 1993;119:969-76.
- 5. Bradford RH, Shear CL, Chremos AN, Dujovne C, Downton M, Franklin FA, Gould, AL, Hesney M, Higgins J, Hurley DP, Langendorfer A, Nash DT, Pool JL, Schnaper H. Expanded clinical evaluation of lovastatin (EXCEL) study results. I. Efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. Arch Intern Med 1991;151:43-9.
- 6. Brown BG, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan CK, Khao XQ, Bisson BD, Fitzpatrick VF, Dodge HT. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Eng J Med 1990;323:1289-98.
- 7. Cashin-Hemphill L, Kramsch DM, Azen P, DeMets D, DeBoer L, Hwang I, Vailas L, Hirsch LJ, Mack WJ, Hodis HN, Mahrer PR, Selzer RH, Alaupovic P, Blankenhorn DH. The monitored artherosclerosis regression study (MARS). On line J of Curr Clin Trials 1992;1059-2725.
- 8. DeLong D, et al. A comparison of methods. JAMA 1986; 256: 2372-77.
- 9. East C, Alivizatos PA, Grundy SC, Jones PH, Farmer JA. Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation. N Engl J Med 1988; 318(1):47-8.
- 10. East CA, Grundy SM, Bilheimer DW. Preliminary report: Treatment of Type 3 hyperlipoproteinemia with mevinolin. Metab Clin Exp 1986;35(2):97-8.

- 11. Effects of lipid-lowering therapy with lovastatin on the progression of coronary atherosclerosis. The Mevinolin (lovastatin) atherosclerosis regression study (MARS). Abstract presented EAS Meeting, Nice France, May 1992.
- 12. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins An integrated approach to mechanisms and disorders. N Engl J Med 1967;276:148-56.
- 13. Furberg CD, Adams HP Jr, Applegate WB, Byington RP, Espeland MA, Hartwell T, Hunninghake DB, Lefkowitz DS, Probstfield J, Riley WA, Young B for the Asymptomatic Carotid Artery Progression Study (ACAPS) research group. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Circulation 1994;90(4):1679-87.
- 14. Garg A, Grundy SM. Lovastatin for lowering cholesterol levels in non-insulin-dependent diabetes mellitus. N Engl J Med 1988;318(2):81-6.
- 15. Germershausen JI, Hunt VM, Bostedor RG, Bailey PJ, Karkas JD, Alberts AW. Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem Biophys Res Commun 1989;158(3):667-75.
- 16. Ghidini A, et al. Congenital abnormalities (VATER) in baby born to mother using lovastatin. Lancet 1992;339:1416-7.
- 17. Ghirlanda G, Oradei A, Manto A, Lippa S, Uccioli L, Caputo S, Greco AV, Littarru GP. Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J Clin Pharmacol 1993;33:226-9.
- 18. Grundy SM. Dietary and drug regulation of cholesterol metabolism in man. Lipid Pharmacol 1976;2-II:127.
- 19. Grundy SM, Bilheimer DW. Inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase by mevinolin in familial hypercholesterolemia heterozygotes: Effects on cholesterol balance. Proc Natl Acad Sci USA 1984; 81(4):2538-42.
- 20. Grundy SM, Vega GL. Effects of mevinolin on plasma lipoprotein (LP) metabolism in moderate hypercholesterolemia. Circulation 1984; 70(4, Part 3): II 268.
- 21. Grundy SM, Vega GL. Influence of mevinolin on metabolism of low-density lipoproteins in primary moderate hypercholesterolemia. J Lipid Res 1985; 26(12):1464-75.
- 22. Grundy SM, Vega GL, Bilheimer DW. Influence of combined therapy with mevinolin and interruption of bile-acid reabsorption on low-density lipoproteins in heterozygous familial hypercholesterolemia. Ann Intern Med 1985; 103(3):339-43.
- 23. Hoeg JM, Maher MB, Bailey KR, Brewer HB. The effects of mevinolin and neomycin alone and in combination on plasma lipid and lipoprotein concentrations in type II hyperlipoproteinemia, Atherosclerosis 1986; 60: 209-14.

- 24. Hoeg JM, Maher MB, Bailey KR, Brewer HB. Comparison of six pharmacologic regimens for hypercholesterolemia. Am J Cardiol 1987; 59:812-5.
- 25. Hoeg JM, Maher MB, Zech LA, Bailey KR, Gregg RE, Lachner KJ, Fojo SS, Anchors MA, Bojanovsky M, Sprecher DL, Brewer HB Jr. Effectiveness of mevinolin on plasma lipoprotein concentration in type II hyperlipoproteinemia. Am J Cardiol 1986;57(11):933-9.
- 26. Illingworth DR. How effective is drug therapy in heterozygous familial hypercholesterolemia? Am J Cardiol 1993; 72:54D-58D.
- 27. Illingworth DR, Connor WE. Hypercholesterolemia persisting after distal ileal bypass; response to mevinolin. Ann Intern Med 1984; 100(6):850-1.
- 28. Illingworth DR, Corbin D. The influence of mevinolin on the adrenal cortical response to corticotropin in heterozygous familial hypercholesterolemia. Proc Natl Acad Sci USA 1985;82(18):6291-4.
- 29. Illingworth DR, Sexton GJ. Hypocholesterolemic effects of mevinolin in patients with heterozygous familial hypercholesterolemia. J Clin Invest 1984; 74(6):1972-8.
- 30. Illingworth DR. Comparative efficacy of once versus twice daily mevinolin in the therapy of familial hypercholesterolemia. Clin Pharmacol Ther 1986; 40:338-43.
- 31. Illingworth DR. Mevinolin plus colestipol in therapy for severe heterozygous familial hypercholesterolemia. Ann Intern Med 1984; 101(5):598-604.
- 32. Illingworth DR, Pappu AS, Bacon SP. Metabolic and clinical effects of mevinolin in familial hypercholesterolemia. Atherosclerosis 1986; VII:611-4.
- 33. Krukemyer JJ, Talbert RL. Lovastatin: a new cholesterol-lowering agent. Pharmacotherapy 1987;7(6):198-210.
- 34. Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention Trial Results. I. Reduction in Incidence of Coronary Heart Disease and, II. The Relationship of Reduction in Incidence of Coronary Heart Disease to Cholesterol Lowering. JAMA 1984; 251:351-74.
- 35. Mabuchi H, Haba T, Tatami R, Miyamoto S, Sakai Y, Wakasugi T, Watanabe A, Kiozumi J, Takeda R. Effects of an inhibitor of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase on serum lipoproteins and uriquinone-10 levels in patients with familial hypercholesterolemia. N Engl J Med 1981; 305(9):478-82.

- 36. Malloy MJ, Kane JP, Kunitake ST, Tun P. Complementarity of colestipol, niacin, and lovastatin in treatment of severe familial hypercholesterolemia. Ann Intern Med 1987;107(5):616-23.
- 37. Norman DJ, Illingworth DR, Munson J, Hosenpud J. Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin. N Engl J Med 1988; 318 (1):46-7.
- 38. Quérin S, Lambert R, Cusson JR, Grégoire S, Vickers S, Stubbs Sweany AE, Larochelle P. Single-dose pharmacokinetics of ¹⁴ C-lovastatin in chronic renal failure. Clin Pharmacol Ther 1991; 437-41.
- 39. Scanu AM. Lipoprotein(a) as a cardiovascular risk factor. Trends Cardiovasc Med 1991;1: 294-9.
- 40. Smith GD, Song F, Sheldon TA. Cholesterol lowering and mortality: the importance of considering initial level of risk. Br Med J 1993; 306:1367-71.
- 41. Stein EA. Treatment of familial hypercholesterolemia with drugs in children. Arteriosclerosis 1989;9(1 Suppl): I-145-51.
- 42. Thompson GR, Ford J, Jenkinson M, Trayner I. Efficacy of mevinolin as adjuvant therapy for refractory familial hypercholesterolemia. Q J Med 1986; 60 (232):803-11.
- 43. Tobert JA, Bell GD, Birtwell J, James I, Kukovetz WR, Pryor JS, Buntinx A, Holmes IB, Chao YS, Bolognese JA. Cholesterol-lowering effect of mevinolin, an inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, in healthy volunteers. J Clin Invest 1982;69(4):913-9.
- 44. Tobert JA. Reply to two letters addressed to the Editor in The New England Journal of Medicine. N Engl J Med 1988;318(1):48.
- 45. Tobert JA, Hitzenberger G, Kukovetz WR, Holmes IB, Jones KH. Rapid and substantial lowering of human serum cholesterol by mevinolin (MK-803), an inhibitor of hydroxymethylglutaryl-coenzyme A reductase. Atherosclerosis 1982;41(1):61-5.
- 46. Traber mg, Kayden HJ. Inhibition of cholesterol synthesis by mevinolin lipoprotein receptor activity in human monocyte-derived macrophages. Atherosclerosis 1984;52(1):1-11.
- 47. Uauy R, Vega GL, Grundy SM, Bilheimer DM. Lovastatin therapy in receptor-negative homozygous familial hypercholesterolemia: lack of effect on low-density lipoprotein concentrations or turnover. J Pediatr 1988;113:387-92.
- 48. Vega GL, Grundy SC. Treatment of primary moderate hypercholesterolemia with lovastatin (Mevinolin) and Colestipol. JAMA 1987;257(1):33-8.

- 49. Waters D, Higginson L, Gladstone P, Kimball B, Le May M, Broccuzzi SJ, Lespérance J, the CCAIT Study Group. Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial. Circulation 1994; 89 (3)959-68.
- 50. Waters D, Higginson L, Gladstone P, Kimball B, Lemay M, Lesperance J. Design features of a controlled clinical trial to assess the effect of an HMG CoA reductase inhibitor on the progression of coronary artery disease. Controlled Clin Trials 1993;14(1):45-74.
- 51. Yoshida EM, Levin A. Lovastatin and cholestasis. Can Med Ass J 1993;148(3):374.
- 52. Monographie de produit, MEVACOR^{MC} (Merck Frosst Canada inc.), Numéro de contrôle : 169342, Date de révision : 13 janvier 2014.

PARTIE III : RENSEIGNEMENTS POUR LE CONSOMMATEUR

PrPRO-LOVASTATIN

Comprimés de lovastatine, USP

Le présent dépliant constitue la troisième et dernière partie d'une « monographie de produit » publiée à la suite de l'approbation de la vente au Canada de PRO-LOVASTATIN et s'adresse tout particulièrement aux consommateurs. Le présent dépliant n'est qu'un résumé et ne donne pas tous les renseignements au sujet de PRO-LOVASTATIN. Pour toute question au sujet de ce médicament, communiquez avec votre médecin ou votre pharmacien.

Important – Ce médicament est prescrit pour un problème de santé particulier et pour votre usage personnel seulement. Ne le donnez pas à d'autres personnes et ne l'utilisez pas pour traiter d'autres affections.

AU SUJET DE CE MÉDICAMENT

PRO-LOVASTATIN est la marque utilisée pour la substance appelée lovastatine. PRO-LOVASTATIN ne peut s'obtenir que **sur ordonnance** du médecin.

Les raisons d'utiliser ce médicament

Votre médecin vous a prescrit PRO-LOVASTATIN pour vous aider à abaisser votre taux de cholestérol associé à un taux normal ou élevé de triglycérides.

Un taux élevé de cholestérol peut causer une maladie coronarienne en obstruant les vaisseaux sanguins (athérosclérose) qui transportent l'oxygène et les éléments nutritifs au cœur. PRO-LOVASTATIN est utilisé pour ralentir la progression de l'athérosclérose dans les artères coronaires (vaisseaux sanguins du cœur).

Comme partie intégrante de votre plan de traitement visant à réduire votre taux de cholestérol et selon votre état de santé et votre mode de vie, votre médecin vous conseillera peut-être de suivre un régime alimentaire et d'autres mesures comme l'exercice et la perte de poids.

Les effets de ce médicament

La lovastatine fait partie de la classe de médicaments connus sous le nom de **régulateurs du métabolisme lipidique**. Ces composés **inhibent** ou, en d'autres mots, bloquent une enzyme dont l'organisme a besoin pour produire le cholestérol. De cette façon, le foie fabrique moins de cholestérol. Des médicaments comme PRO-LOVASTATIN sont prescrits **en plus** et **non en remplacement** du régime alimentaire et d'autres mesures. La lovastatine abaisse les taux sanguins de cholestérol (en particulier le cholestérol lié aux lipoprotéines de basse densité [LDL]) et d'autres lipides, et pourrait ainsi prévenir les maladies cardiaques attribuables à l'obstruction des vaisseaux sanguins par le

cholestérol, ou ralentir la progression de l'athérosclérose (durcissement) des artères qui irriguent le cœur, affection connue sous le nom de maladie coronarienne.

Les circonstances où il est déconseillé d'utiliser ce médicament

Ne prenez pas PRO-LOVASTATIN:

- si vous êtes allergique à l'un des composants de ce médicament;
- si vous présentez une affection hépatique évolutive;
- si vous êtes enceinte ou si vous allaitez.
- si vous prenez l'un des médicaments suivants :
 - o certains antifongiques (itraconazole, kétoconazole, posaconazole ou voriconazole)
 - o inhibiteurs de la protéase du VIH (indinavir, nelfinavir, ritonavir et saquinavir)
 - o certains inhibiteurs de la protéase du virus de l'hépatite C (bocéprévir ou télaprévir)
 - o certains antibiotiques (érythromycine, clarithromycine ou télithromycine ¹)
 - o la néfazodone¹ (antidépresseur)
 - o les médicaments contenant du cobicistat
 - o la cyclosporine (immunosuppresseur)

Si vous n'êtes pas sûr que votre médicament fait partie de ceux mentionnés ci-dessus, votre médecin ou votre pharmacien pourra vous renseigner.

L'ingrédient médicinal est :

Lovastatine

Les ingrédients non médicinaux sont :

AD&C bleu nº 2 sur substrat d'aluminium, amidon prégélifié, hydroxyanisole butylé, cellulose microcristalline, lactose, stéarate de magnésium et les ingrédients suivants.

Les comprimés à **20 mg** contiennent aussi du FD&C bleu n^o 1 sur substrat d'aluminium.

Les comprimés à **40 mg** contiennent aussi du D&C jaune n^o 10 sur substrat d'aluminium.

Les formes posologiques sont :

Comprimés: 20 mg et à 40 mg

MISES EN GARDE ET PRÉCAUTIONS

Avant de prendre PRO-LOVASTATIN, veuillez consulter votre médecin ou votre pharmacien :

- Si vous êtes enceinte ou envisagez de le devenir, ou si vous allaitez ou avez l'intention de le faire.
- Si vous avez un problème à la thyroïde.
- Si vous prenez, régulièrement, *trois verres ou plus* de boissons alcoolisées par jour.

¹ Non commercialisée au Canada

- Si vous prenez un autre médicament qui abaisse le taux de cholestérol, comme les fibrates (gemfibrozil, fénofibrate), la niacine ou l'ézétimibe.
- Si vous prenez d'autres médicaments, y compris des médicaments délivrés sur ordonnance ou obtenus en vente libre ou des produits naturels, en raison des interactions possibles entre les médicaments.
- Si vous avez des antécédents familiaux de troubles musculaires.
- Si vous avez déjà eu des problèmes musculaires (douleur, sensibilité) après avoir pris un inhibiteur de l'HMG-CoA réductase (statine), comme l'atorvastatine, la fluvastatine, la pravastatine, la rosuvastatine et la simvastatine, ou si vous avez développé une allergie ou une intolérance à l'un de ces médicaments.
- Si vous avez des problèmes au niveau des reins ou du foie.
- Si vous souffrez de diabète. Une augmentation faible du glucose sanguin peut survenir lorsque vous prenez PRO-LOVASTATIN. Discutez avec votre médecin des risques de développer le diabète.
- Si vous avez subi une intervention chirurgicale ou une lésion des tissus.
- Si vous pratiquez des exercices physiques intenses.
- Si vous êtes en âge de procréer. Les composés à base de cholestérol sont essentiels au développement du fœtus. Par ailleurs, les médicaments qui abaissent le cholestérol peuvent comporter un risque pour le fœtus. Les femmes en âge de procréer doivent parler avec leur médecin des risques potentiels du médicament pour le fœtus et de l'importance d'utiliser une méthode contraceptive.
- Si vous devenez enceinte. PRO-LOVASTATIN ne doit pas être utilisé chez les femmes enceintes. Si vous devenez enceinte, vous devez cesser immédiatement la prise du médicament et consulter votre médecin.

Lorsque vous amorcez un traitement avec PRO-LOVASTATIN, après avoir augmenté la dose de ce médicament ou à tout moment, vous devez aviser votre médecin sans tarder si vous présentez une douleur, une sensibilité ou une faiblesse musculaires inexpliquées.

Assurez-vous de dire à votre médecin que vous prenez PRO-LOVASTATIN si vous devez subir une chirurgie majeure non urgente ou si vous avez tout autre problème de santé grave.

INTERACTIONS MÉDICAMENTEUSES

Pendant votre traitement avec PRO-LOVASTATIN, vous devez informer votre médecin de tous les médicaments que vous prenez ou que vous prévoyez utiliser, y compris ceux obtenus en vente libre. Vous devez également informer tout médecin qui vous prescrit un nouveau médicament que vous prenez PRO-LOVASTATIN.

Étant donné que l'administration de PRO-LOVASTATIN

conjointement avec certains médicaments ou substances peut accroître le risque de problèmes musculaires (voir EFFETS SECONDAIRES ET MESURES A PRENDRE), il est particulièrement important d'informer votre médecin lorsque vous prenez l'un des médicaments suivants :

- antifongiques (tels l'itraconazole ou le kétoconazole, posaconazole ou voriconazole)
- antibiotiques (érythromycine, clarithromycine, télithromycine¹, et acide fusidique [par voie orale¹ ou intraveineuse¹])
- inhibiteurs de la protéase du VIH (indinavir, nelfinavir, ritonavir et saquinavir)
- bocéprévir ou télaprévir (médicaments utilisés pour traiter l'infection par le virus de l'hépatite C)
- néfazodone (antidépresseur)
- les médicaments contenant du cobicistat
- dérivés de l'acide fibrique (gemfibrozil et bézafibrate)
- cyclosporine (immunosuppresseur)
- danazol
- vérapamil ou diltiazem (médicaments utilisés pour traiter l'hypertension ou l'angine de poitrine)
- amiodarone (médicament utilisé pour traiter les irrégularités du rythme cardiaque)
- colchicine (médicament utilisé pour traiter la goutte)
- jus de pamplemousse (qui ne devrait pas être consommé pendant le traitement au PRO-LOVASTATIN.)

Il est également important d'informer votre médecin si vous prenez des corticostéroïdes, des anticoagulants (médicaments, telle la warfarine, la phenprocoumone ou l'acénocoumarine, qui préviennent la formation de caillots sanguins), la digoxine (médicament utilisé pour traiter certains problèmes cardiaques), la niacine ou le fénofibrate, un autre dérivé de l'acide fibrique.

Certaines de ces interactions ont déjà été mentionnées à la section précédente intitulée « Les circonstances où il est déconseillé d'utiliser ce médicament ».

On n'a pas encore établi l'innocuité de ce médicament chez les adolescents et les enfants.

UTILISATION APPROPRIÉE DE CE MÉDICAMENT

Dose habituelle

• Prenez votre médicament tel que l'a prescrit votre médecin. Ne modifiez pas la dose du médicament sauf si votre médecin vous le prescrit. On recommande habituellement de le prendre en une seule dose avec le repas du soir ou en deux doses avec le repas du matin et celui du soir. Le médecin peut augmenter la dose pour atteindre un maximum de 80 mg/jour, en une seule dose avec le repas du soir ou en deux doses avec le repas

¹ Non commercialisée au Canada

du matin et celui du soir. Il importe de toujours prendre les comprimés selon les directives du médecin. Ne modifiez pas la posologie et n'interrompez pas le traitement sans consulter le médecin.

- Conformez-vous rigoureusement aux recommandations du médecin en matière de régime alimentaire, d'exercice physique et de maîtrise du poids.
- Lorsque vous prenez PRO-LOVASTATIN vous devez éviter de boire du jus de pamplemousse.
- Si vous prenez PRO-LOVASTATIN conjointement avec la cholestyramine ou une autre résine, assurez-vous de laisser un intervalle d'au moins deux heures entre la prise des deux médicaments.
- Respectez le calendrier des visites établi par le médecin afin que les analyses de laboratoire nécessaires soient effectuées et que le médecin puisse juger de l'amélioration de votre état aux intervalles appropriés.
- Évitez la consommation excessive d'alcool.
- Ne prenez pas d'autres médicaments, sans en avoir d'abord discuté avec votre médecin.
- Prévenez votre médecin si vous souffrez d'une blessure ou d'une infection graves.
- Prévenez votre médecin dans le cas où vous devez subir une intervention chirurgicale, quelle qu'elle soit. Faites aussi savoir au dentiste ou au médecin traitant que vous prenez PRO-LOVASTATIN ou tout autre médicament.

Dose excessive

Communiquez immédiatement avec votre médecin.

En cas de surdosage, communiquez immédiatement avec un professionnel de la santé, le service des urgences d'un hôpital ou le centre antipoison de votre région, même si vous ne présentez aucun symptôme.

Dose oubliée

Si vous oubliez de prendre un comprimé, prenez-le dès que vous vous apercevez de votre oubli, à moins que cette dose ne se trouve trop rapprochée de la suivante; ne prenez alors que la dose prescrite au moment indiqué. **Ne prenez pas une double dose.**

PROCÉDURES À SUIVRE EN CE QUI CONCERNE LES EFFETS SECONDAIRES

En plus de l'effet escompté, tout médicament est susceptible de produire des effets secondaires. Pour la plupart des gens, ce traitement médicamenteux n'entraîne pas de problème, mais si l'une des réactions suivantes survenait, **consultez votre médecin le plus tôt possible**:

Fièvre Vision brouillée Effets sur les muscles

D'autres effets secondaires peuvent se manifester dans certains cas, mais ils n'exigent généralement pas que vous consultiez

votre médecin. Ces réactions peuvent apparaître et disparaître au cours du traitement. Cependant, si elles persistent ou deviennent incommodantes, vous devez les signaler à votre médecin ou à votre pharmacien. Ces réactions comprennent :

Constipation, diarrhée, gaz intestinaux, troubles de la digestion, nausées

Douleur abdominale

Maux de tête, étourdissements

Éruptions cutanées

Troubles de la mémoire

Perte de mémoire

Confusion

Dépression

Dysfonction érectile

Les effets secondaires possibles rapportés avec d'autres statines comprennent :

- Problèmes respiratoires, y compris toux persistante et essoufflement ou fièvre
- Troubles du sommeil, y compris insomnie et cauchemars
- Troubles de l'humeur

Des effets secondaires, comme la myalgie (douleur musculaire), la myopathie (trouble musculaire accompagné de douleur ou de faiblesse [qui dans de très rares cas peut persister même après avoir arrêté le traitement à la lovastatine]), la rhabdomyolyse (affection causant une dégradation des muscles) et une sensibilité associée, et de rares cas de rhabdomyolyse entraînant une insuffisance rénale ont été rapportés avec les médicaments de la classe des inhibiteurs de l'HMG-CoA réductase (statines), y compris PRO-LOVASTATIN.

Comme, dans de rares cas, les problèmes musculaires peuvent être graves, vous devez communiquer immédiatement avec votre médecin si vous présentez l'un des effets secondaires suivants :

- douleur musculaire que vous ne pouvez expliquer
- sensibilité ou faiblesse des muscles
- faiblesse générale, en particulier si vous ne vous sentez pas bien (c.-à-d. fièvre ou fatigue)
- urine brune ou foncée

Consultez régulièrement votre médecin pour connaître votre taux de cholestérol et vérifier les réactions défavorables possibles. Votre médecin vous prescrira des analyses sanguines afin d'évaluer votre fonction hépatique avant la prise de PRO-LOVASTATIN et de s'assurer que vous ne présentez aucun symptôme de problèmes au niveau du foie pendant le traitement avec PRO-LOVASTATIN.

Signalez immédiatement à votre médecin toute douleur, sensibilité ou faiblesse musculaires. Vous devez le faire étant donné que, dans de rares cas, les problèmes musculaires peuvent être graves, notamment une dégradation musculaire pouvant entraîner des lésions rénales.

Le risque de dégradation musculaire est plus grand chez les patients qui prennent des doses élevées de PRO-LOVASTATIN. Ce risque est également plus grand chez les patients qui présentent une fonction rénale anormale.

PRO-LOVASTATIN peut causer l'obtention de résultats de tests sanguins anormaux. Votre médecin décidera quand vous devrez faire des tests sanguins et interprétera les résultats.

EFFETS SECONDAIRES GRAVES, FRÉQUENCE ET PROCÉDURES À SUIVRE				
Symptôme / effet		Consultez votre médecin ou votre pharmacien		Cessez de prendre le médicament
		Seulement pour les effets secondaires graves	Dans tous les cas	et obtenez des soins d'urgence immédiate- ment
Inconnus	Élévation du taux	✓		
	de sucre dans le			
	sang: urination			
	fréquente, soif et			
	faim			
Rare	Réactions			✓
	allergiques :			
	éruption cutanée,			
	urticaire, enflure du			
	visage, des lèvres,			
	de la langue ou de la gorge, difficulté à			
	avaler ou à respirer			
	Urine brunâtre ou		1	
	foncée		•	
	Problèmes de foie :			
	douleur dans le haut		V	
	de l'abdomen,			
	nausées,			
	vomissements, perte			
	d'appétit, urine			
	brune/foncée,			
	jaunissement de la			
	peau et des yeux,			
	démangeaisons,			
	selles pâles			
	Faiblesse		✓	
	généralisée, en			
	particulier si vous ne vous sentez pas			
	bien			
	Faiblesse			
	musculaire		✓	
	inexpliquée			
	Sensibilité ou		,	
	faiblesse des		*	
	muscles			

Cette liste d'effets secondaires n'est pas complète. Consultez votre médecin ou votre pharmacien, si vous avez des effets secondaires inattendus lors du traitement avec PRO-LOVASTATIN.

COMMENT CONSERVER LE MÉDICAMENT

Conserver entre 15 °C et 30 °C, à l'abri de la lumière. Garder la bouteille fermée hermétiquement et les plaquettes alvéolées à l'intérieur de leur emballage en carton jusqu'à ce qu'il ne reste plus de comprimés.

Garder tous les médicaments hors de la portée et de la vue des enfants

Ne prenez pas le médicament après la date limite d'utilisation indiquée sur l'emballage.

Signalement des effets secondaires

Vous pouvez contribuer à l'amélioration de l'utilisation sécuritaire des produits de santé pour les Canadiens en signalant tout effet secondaire grave ou imprévu à Santé Canada. Votre déclaration peut nous permettre d'identifier des nouveaux effets secondaires et de changer les renseignements liés à l'innocuité des produits.

3 façons de signaler :

- Faire une déclaration en ligne au MedEffet;
- Téléphoner au numéro sans frais 1-866-234-2345; ou
- Envoyer un formulaire de déclaration des effets

secondaires du consommateur par télécopieur ou par la poste :

- -Numéro de télécopieur sans frais 1-866-678-6789
- -Adresse postale: Programme Canada Vigilance

Santé Canada

Indice de l'adresse : 0701E

Ottawa (Ontario)

K1A 0K9

Des étiquettes d'adresse prépayées et le formulaire sont disponibles au <u>MedEffet</u>.

REMARQUE: Consultez votre professionnel de la santé si vous avez besoin de renseignements sur le traitement des effets secondaires. Le Programme Canada Vigilance ne donne pas de conseils médicaux.

POUR DE PLUS AMPLES RENSEIGNEMENTS

On peut obtenir ce document et la monographie complète du produit, rédigée pour les professionnels de la santé, en communiquant avec Pro Doc Ltée au 1-800-361-8559, www.prodoc.qc.ca ou info@prodoc.qc.ca.

La présente notice a été préparée par Pro Doc Ltée, Laval (Québec) H7L 3W9

Dernière révision: 07 octobre 2016