PRODUCT MONOGRAPH

APO-AMIODARONE

Amiodarone Tablets BP

200 mg amiodarone hydrochloride

Antiarrhythmic Agent

APOTEX INC.
150 Signet Drive
Toronto, Ontario
Canada M9L 1T9

DATE OF REVISION: April 6, 2017

Control #204336
Table of Contents

PART I: HEALTH PROFESSIONAL INFORMATION ... 3

- SUMMARY PRODUCT INFORMATION ... 3
- INDICATIONS AND CLINICAL USE ... 3
- CONTRAINDICATIONS .. 4
- WARNINGS AND PRECAUTIONS ... 4
- ADVERSE REACTIONS .. 19
- DRUG INTERACTIONS ... 25
- DOSAGE AND ADMINISTRATION .. 30
- OVERDOSAGE .. 32
- ACTION AND CLINICAL PHARMACOLOGY ... 33
- STORAGE AND STABILITY .. 36
- DOSAGE FORMS, COMPOSITION AND PACKAGING 37

PART II: SCIENTIFIC INFORMATION ... 38

- PHARMACEUTICAL INFORMATION ... 38
- CLINICAL TRIALS .. 38
- DETAILED PHARMACOLOGY ... 41
- TOXICOLOGY .. 43
- REFERENCES .. 56

PART III: CONSUMER INFORMATION ... 62
PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form / Strength</th>
<th>All Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Tablet / 200 mg</td>
<td>colloidal silicon dioxide, croscarmellose sodium, crospovidone, FD&C Red # 40 Aluminum Lake 38 to 42% and Magnesium Stearate.</td>
</tr>
</tbody>
</table>

INDICATIONS AND CLINICAL USE

No antiarrhythmic drug has been shown to reduce the incidence of sudden death in patients with asymptomatic ventricular arrhythmias. Most antiarrhythmic drugs have the potential to cause dangerous arrhythmias; some have been shown to be associated with an increased incidence of sudden death. In light of the above, physicians should carefully consider the risks and benefits of antiarrhythmic therapy for all patients with ventricular arrhythmias.

Because the life-threatening nature of arrhythmias treated, potential interaction with prior therapy, and potential exacerbation of arrhythmia, initiation of therapy with APO-AMIODARONE should be carried out in the hospital.

APO-AMIODARONE should be used only by physicians familiar with and with access to (directly or referral) the use of all available modalities for treating recurrent life-threatening ventricular arrhythmias, and who have access to appropriate monitoring facilities, including in-hospital and ambulatory continuous electrocardiographic monitoring and electrophysiologic technique.

Oral APO-AMIODARONE

Because of its potential for life-threatening side effects and the substantial management difficulties associated with its oral use, APO-AMIODARONE is indicated only for the treatment of patients with the following documented life-threatening, recurrent ventricular arrhythmias when these have not responded to documented adequate doses of other available antiarrhythmics, or when alternative agents could not be tolerated.

1. Hemodynamically unstable ventricular tachycardia (VT).

2. Recurrent ventricular fibrillation (VF).
As is the case for other antiarrhythmic agents, there is no evidence from controlled clinical trials that the use of amiodarone tablets favourably affects survival.

Geriatrics (> 65 years of age)
Clinical studies of amiodarone tablets did not include sufficient number of subjects aged 65 years and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Pediatrics (<18 years of age)
The safety and efficacy of amiodarone in children have not been established; therefore, its use in children is not recommended.

CONTRAINDICATIONS

APO-AMIODARONE (amiodarone HCI) is contraindicated in patients with known hypersensitivity to any of the components of oral APO-AMIODARONE (tablets) including iodine, and in patients with cardiogenic shock. It is contraindicated in severe sinus-node dysfunction, causing bradycardia; second- or third-degree V block, and when episodes of bradycardia have caused syncope (except when used in conjunction with a pacemaker). In addition oral APO-AMIODARONE is contraindicated in patients with evidence of hepatitis (see WARNINGS AND PRECAUTIONS, Hepatic/Biliary/Pancreatic), thyroid dysfunction (see WARNINGS AND PRECAUTIONS, Thyroid Dysfunction) or pulmonary interstitial abnormalities (see WARNINGS AND PRECAUTIONS, Pulmonary Toxicity).

WARNINGS AND PRECAUTIONS

APO-AMIODARONE is intended for use only in patients with the indicated life-threatening arrhythmias because its use is accompanied by substantial toxicity.

Amiodarone hydrochloride has several potentially fatal toxicities, the most important of which is pulmonary toxicity (hypersensitivity pneumonitis or interstitial/alveolar pneumonitis) that has resulted in clinically manifest disease at rates as high as 10 to 17% in some series of patients with ventricular arrhythmias given doses around 400 mg/day, and as abnormal diffusion capacity without symptoms in a much higher percentage of patients. Pulmonary toxicity has been fatal about 10% of the time. Liver injury is common with amiodarone hydrochloride, but is usually mild and evidenced only by abnormal liver enzymes. Overt liver disease can occur, however, and has been fatal in a few cases. Like other antiarrhythmics, APO-AMIODARONE can exacerbate the arrhythmia, e.g., by making the arrhythmia less well tolerated or more difficult to reverse. This has occurred in 2 to 5% of patients in various series, and significant heart block or sinus bradycardia has been seen in 2 to 5%. All of these events should be manageable in the proper clinical setting in most cases. Although the frequency of such proarrhythmic events does not appear greater with amiodarone hydrochloride than with many other agents used in this population, the effects are prolonged when they occur.
Even in patients at high risk of arrhythmic death, in whom the toxicity of APO-AMIODARONE is an acceptable risk, APO-AMIODARONE poses major management problems that could be life-threatening in a population at risk of sudden death, so that every effort should be made to utilize alternative agents first.

The difficulty of using APO-AMIODARONE effectively and safely itself poses a significant risk to patients. Patients with the indicated arrhythmias must be hospitalized while the loading dose of APO-AMIODARONE is given, and a response generally requires at least one week, usually two or more. Because absorption and elimination are variable, maintenance-dose selection is difficult, and it is not unusual to require dosage decrease or discontinuation of treatment. In a retrospective survey of 192 patients with ventricular tachyarrhythmias, 84 required dose reduction and 18 required at least temporary discontinuation because of adverse effects, and several series have reported 15 to 20% overall frequencies of discontinuation due to adverse reactions. The time at which a previously controlled life-threatening arrhythmia will recur after discontinuation or dose adjustment is unpredictable, ranging from weeks to months. The patient is obviously at great risk during this time and may need prolonged hospitalization. Attempts to substitute other antiarrhythmic agents when APO-AMIODARONE must be stopped will be made difficult by the gradually, but unpredictably, changing amiodarone body burden. A similar problem exists when APO-AMIODARONE is not effective; it still poses the risk of an interaction with whatever subsequent treatment is tried.

General
Oral APO-AMIODARONE (amiodarone HCl)
Mortality
The results of the Cardiac Arrhythmia Suppression Trial (CAST) in post myocardial infarction patients with asymptomatic non-life threatening ventricular arrhythmias who had a myocardial infarction more than six days but less than two years previously showed a significant increase in mortality and non-fatal cardiac arrest rate in patients treated with encainide or flecainide (56/730) compared with a matched placebo treatment group (22/725). CAST was continued using a revised protocol with moricizine and placebo treatment groups only. The trial was prematurely terminated because of the trend towards an increase in mortality in the moricizine-treated group.

The applicability of these results to other populations or other antiarrhythmic agents is uncertain, but at present, it is prudent to consider these results when using any antiarrhythmic agent.

Amiodarone hydrochloride therapy was evaluated in two multicenter, randomized, double-blind, placebo-controlled trials involving 1202 (Canadian Amiodarone Myocardial Infarction Arrhythmia Trial; CAMIAT) and 1486 (European Myocardial Infarction Amiodarone Trial; EMIAT) post-MI patients followed for up to 2 years. Patients in CAMIAT qualified with ventricular arrhythmias, and those randomized to amiodarone received weight- and response-adjusted doses of 200 to 400 mg/day. Patients in EMIAT qualified with ejection fraction <40%, and those randomized to amiodarone received fixed doses of 200 mg/day. Both studies had weeks-long loading dose schedules. Intent-to-treat all-cause mortality results were as follows:
<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Amiodarone</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Deaths</td>
<td>N</td>
</tr>
<tr>
<td>EMIAT</td>
<td>743</td>
<td>102</td>
<td>743</td>
</tr>
<tr>
<td>CAMIAT</td>
<td>596</td>
<td>68</td>
<td>606</td>
</tr>
</tbody>
</table>

These data are consistent with the results of a pooled analysis of 13 smaller, controlled studies involving patients with structural heart disease (including myocardial infarction) where total mortality was reduced by only 13% (odds ratio 0.87, [95% confidence interval 0.75 to 0.99] p=0.03) based on classic fixed effects meta-analysis.

Patients with life-threatening arrhythmias may experience serious adverse events during their treatment and therefore should be properly monitored. APO-AMIODARONE (amiodarone HCl) should be administered only by physicians who are experienced in the treatment of life-threatening arrhythmias, who are thoroughly familiar with the risks and benefits of amiodarone hydrochloride therapy, and who have access to facilities adequate for monitoring the effectiveness and adverse events of treatment (see “INDICATIONS AND CLINICAL USE”).

Loading Phase

The higher doses of oral APO-AMIODARONE used in the loading phase may sometimes be associated with adverse effects such as nausea or tremor. The nausea may respond to dividing the total dose into two or three fractions taken with meals, or by decreasing the total daily dose. The tremor may respond to dose reduction as well.

Carcinogenesis and Mutagenesis

Oral amiodarone hydrochloride caused a statistically significant, dose-related increase in the incidence of thyroid tumors (follicular adenoma and/or carcinoma) in rats. The incidence of thyroid tumors in rats was greater than the incidence in controls even at the lowest dose level tested, i.e., 5 mg/kg/day (approximately 0.08 times the maximum recommended human maintenance dose*).

Mutagenicity studies conducted with amiodarone HCl (Ames, micronucleus, and lysogenic induction tests) were negative.

*600 mg in a 50 kg patient (dose compared on a body surface area basis).

In a study which amiodarone HCl was orally administered to male and female rats, beginning 9 weeks prior to mating, reduced fertility was observed at a dose level of 90 mg/kg/day (approximately 1.4 times the maximum recommended human maintenance dose*)

*600 mg in a 50 kg patient (dose compared on a body surface area basis).

Cardiovascular

Proarrhythmia/QT Interval Prolongation

Amiodarone may cause a worsening of the existing arrhythmias or precipitate a new arrhythmia. Amiodarone causes prolongation of the QT interval. Proarrhythmia, primarily torsades de
pointes, has been associated with prolongation of the QTc interval to 500 ms or greater. Proarrhythmic effects generally occur in the context of QT prolongation factors such as drug interactions and/or electrolytic disorders. Despite QT interval prolongation, amiodarone exhibits a low torsadogenic activity. Proarrhythmia has been reported (2% to 5%) with oral amiodarone hydrochloride, especially in the presence of concomitant antiarrhythmic therapy and has included new-onset VF, incessant VT, increased resistance to cardioversion, and paroxysmal polymorphic VT associated with QT prolongation “torsades de pointes”. Although QTc prolongation occurred frequently in patients receiving I.V. amiodarone, torsades de pointes or new-onset VF occurred infrequently (less than 2% of all patients treated with I.V. amiodarone in controlled clinical trials). Patients should be monitored carefully for QTc prolongation during amiodarone therapy. Combination of amiodarone with other antiarrhythmic therapy that prolongs the QTc should be reserved for patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent.

The need to co-administer amiodarone with any other drug known to prolong the QTc interval must be based on a careful assessment of the potential risks and benefits of doing so for each patient.

Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without torsades de pointes, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly.

A careful assessment of the potential risks and benefits of administering oral APO-AMIODARONE must be made in patients with thyroid dysfunction due to the possibility of arrhythmia breakthrough or exacerbation of arrhythmia in these patients. For patients receiving I.V. amiodarone, death may result.

Even in patients at high risk of arrhythmic death, in whom the toxicity of amiodarone is an acceptable risk, amiodarone poses major management problems that could be life-threatening in a population at risk of sudden death, so that every effort should be made to utilize alternative agents first.

The difficulty of using amiodarone effectively and safely poses a significant risk to patients. Patients with the indicated arrhythmias must be hospitalized while the loading dose of amiodarone is given, and a response generally requires at least one week, usually two or more. Because absorption and elimination are variable, maintenance-dose selection is difficult, and it is not unusual to require dosage decrease or discontinuation of treatment. In a retrospective survey of 192 patients with ventricular tachyarrhythmias, 84 required dose reduction and 18 required at least temporary discontinuation because of adverse effects, and several series have reported 15 to 20% overall frequencies of discontinuation due to adverse reactions. The time at which a previously controlled life-threatening arrhythmia will recur after discontinuation or dose adjustment is unpredictable, ranging from weeks to months. The patient is obviously at great risk during this time and may need prolonged hospitalization. Attempts to substitute other antiarrhythmic agents when amiodarone must be stopped will be made difficult by the gradually, but unpredictably, changing amiodarone body burden. A similar problem exists when amiodarone is not effective; it still poses the risk of an interaction
with whatever subsequent treatment is tried.

Bradycardia and AV Block

In patients treated with *oral* amiodarone, symptomatic bradycardia or sinus arrest with suppression of escape foci occurs in approximately 2% to 4% of patients. Bradycardia was reported as an adverse drug reaction in 4.9% of patients receiving I.V. amiodarone for life-threatening VT/VF in clinical trials. AV block was reported as an adverse drug reaction in 1.4% of patients receiving I.V. amiodarone. There was no dose-related increase in bradycardia or AV block in these studies.

In patients who develop symptomatic bradycardia while taking *oral* APO-AMIODARONE, dose reduction or discontinuation, and possibly pacing, may be considered. Due to the large body load of amiodarone that accumulates with chronic dose administration, and the long half-life of the drug, serum concentrations decline slowly after dose reduction or discontinuation.

Severe Bradycardia

Cases of severe, potentially life-threatening bradycardia and heart block have been observed when amiodarone is used in combination with sofosbuvir alone or in combination with another hepatitis C virus (HCV) direct acting antiviral (DAA), such as daclatasvir, simeprevir, or ledipasvir. Therefore, coadministration of these agents with amiodarone is not recommended.

If concomitant use with amiodarone cannot be avoided, it is recommended that patients are closely monitored when initiating sofosbuvir alone or in combination with other DAAs. Patients who are identified as being at high risk of bradyarrhythmia should be continuously monitored for at least 48 hours in an appropriate clinical setting after initiation of the concomitant treatment with sofosbuvir.

Due to the long half-life of amiodarone, appropriate monitoring should also be carried out for patients who have discontinued amiodarone within the past few months and are to be initiated on sofosbuvir alone or in combination with other direct DAAs.

Patients receiving these hepatitis C medicines with amiodarone, with or without other medicines that lower heart rate, should be warned of the symptoms of bradycardia and heart block and should be advised to seek urgent medical advice if they experience them.

Intravenous Amiodarone Hypotension

Hypotension is the most common adverse event seen with I.V. amiodarone therapy: it is uncommon (<1%) during *oral* amiodarone hydrochloride therapy. In clinical trials, treatment-emergent, drug-related hypotension was reported as an adverse effect in 288 (16%) of 1836 patients treated with I.V. amiodarone. Clinically significant hypotension during infusions was seen most often in the first several hours of treatment and was not dose related, but appeared to be related to the rate of infusion. Hypotension necessitating temporary discontinuation of I.V. amiodarone therapy was reported in 5% of the 814 patients, with permanent discontinuation required in an additional 2% of the 814 patients. In some cases, hypotension may be refractory resulting in fatal outcome.
Oral APO-AMIODARONE

Cardiac Disorders

Oral APO-AMIODARONE should be used with caution in patients with latent or manifest heart failure because this condition may be worsened by its administration. In these cases, oral APO-AMIODARONE should be given with appropriate concurrent therapy.

Oral APO-AMIODARONE therapy may be considered in the treatment of patients with Wolff-Parkinson-White (WPW) syndrome, atrial flutter, or atrial fibrillation, when these conditions are complicated by life-threatening ventricular tachyarrhythmias. In such cases, care is required since the effect of oral amiodarone hydrochloride in these conditions does not appear to be uniform. Electrophysiologic studies may be of value in the selection of these patients who may respond to oral APO-AMIODARONE, particularly in WPW syndrome.

Implantable Cardiac Devices
In patients with implanted defibrillators or pacemakers, chronic administration of antiarrhythmic drugs affects pacing or defibrillating thresholds. Therefore, at the inception of and during amiodarone treatment, pacing and defibrillation thresholds should be assessed.

Endocrine and Metabolism

Thyrotoxicosis
Amiodarone hydrochloride-induced hyperthyroidism may result in thyrotoxicosis and/or the possibility of arrhythmia breakthrough or aggravation. There have been reports of death associated with amiodarone-induced thyrotoxicosis. If any new signs of arrhythmia appear, the possibility of hyperthyroidism should be considered (also see Thyroid Dysfunction and Abnormalities, below).

Thyroid Abnormalities and Dysfunction
APO-AMIODARONE inhibits peripheral conversion of thyroxine (T4) to triiodothyronine (T3) and may cause increased thyroxine levels, decreased T3 levels, and increased levels of inactive reverse T3 (rT3) in clinically euthyroid patients. It is also a potential source of large amounts of inorganic iodine. Both hyper- and hypothyroidism may occur during, or soon after treatment with oral APO-AMIODARONE. Because of its release of inorganic iodine, or perhaps for other reasons, APO-AMIODARONE can cause either hypothyroidism or hyperthyroidism. Thyroid function should be monitored prior to treatment and periodically thereafter, particularly in elderly patients, and in any patient with a history of thyroid nodules, goiter, or other thyroid dysfunction. Because of the slow elimination of amiodarone and its metabolites, high plasma iodide levels, altered thyroid function, and abnormal thyroid-function tests may persist for several weeks or even months following APO-AMIODARONE withdrawal.

Hypothyroidism has been reported in 2 to 4% of patients in most series, but in 8 to 10% in some series. This condition may be identified by relevant clinical symptoms and particularly by elevated serum TSH levels. In some clinically hypothyroid amiodarone-treated patients, free thyroxine index values may be normal. Hypothyroidism is best managed by amiodarone dose reduction and/or thyroid hormone supplement. However, therapy must be individualized, and it may be necessary to discontinue APO-AMIODARONE tablets in some patients.
Hyperthyroidism occurs in about 2% of patients receiving amiodarone hydrochloride, but the incidence may be higher among patients with prior inadequate dietary iodine intake. Amiodarone-induced hyperthyroidism usually poses a greater hazard to the patient than hypothyroidism because of the possibility of arrhythmia breakthrough or aggravation, which may result in death. There have been reports of death associated with amiodarone-induced thyrotoxicosis. In fact, IF ANY NEW SIGNS OF ARRHYTHMIA APPEAR, THE POSSIBILITY OF HYPERTHYROIDISM SHOULD BE CONSIDERED. Hyperthyroidism is best identified by relevant clinical symptoms and signs, accompanied usually by abnormally elevated levels of serum T3 RIA, and further elevations of serum T4, and a subnormal serum TSH level (using a sufficiently sensitive TSH assay). The finding of a flat TSH response to TRH is confirmatory of hyperthyroidism and may be sought in equivocal cases. Since arrhythmia breakthroughs may accompany amiodarone-induced hyperthyroidism, aggressive medical treatment is indicated, including, if possible, dose reduction or withdrawal of APO-AMIODARONE.

The institution of antithyroid drugs, beta-adrenergic blockers and/or temporary corticosteroid therapy may be necessary. The action of antithyroid drugs may be especially delayed in amiodarone-induced thyrotoxicosis because of substantial quantities of preformed thyroid hormones stored in the gland. There have been reports of death associated with amiodarone-induced thyrotoxicosis. Radioactive iodine therapy is contraindicated because of the low radioiodine uptake associated with amiodarone-induced hyperthyroidism. Experience with thyroid surgery in this setting is extremely limited, and this form of therapy could induce thyroid storm. Amiodarone-induced hyperthyroidism may be followed by a transient period of hypothyroidism.

There have been postmarketing reports of thyroid nodules/thyroid cancer in patients treated with amiodarone. In some instances hyperthyroidism was also present.

In a rat carcinogenicity study, at doses of 5, 16 and 50 mg/kg/day, amiodarone produced statistically significant dose-related changes in the thyroid gland, including follicular adenomas and carcinomas. The significance of these changes for the long-term use of amiodarone hydrochloride in humans is unknown.

Neonatal Hypo- or Hyperthyroidism

APO-AMIODARONE (amiodarone HCl) can cause fetal harm when administered to a pregnant woman. Although amiodarone use during pregnancy is uncommon, there have been a small number of published reports of congenital goiter/hypothyroidism and hyperthyroidism associated with its oral administration. If APO-AMIODARONE is used during pregnancy, or if the patient becomes pregnant while taking APO-AMIODARONE, the patient should be apprised of the potential hazard to the fetus.

In general, APO-AMIODARONE should be used during pregnancy only if the potential benefit to the mother justifies the unknown risk to the fetus.

In pregnant rats and rabbits, amiodarone HCl in dose of 25 mg/kg/day (approximately 0.4 and
0.9 times, respectively, the maximum recommended human maintenance dose*) had no adverse effects on the fetus. In the rabbit, 75 mg/kg/day (approximately 2.7 times the maximum recommended human maintenance dose*) caused abortions in greater than 90% of the animals.

In the rat, doses of 50 mg/kg/day or more were associated with slight displacement of the testes and an increased incidence of incomplete ossification of some skull and digital bones; at 100 mg/kg/day or more, fetal body weights were reduced; at 200 mg/kg/day, there was an increased incidence of fetal resorption. (These doses in the rat are approximately 0.8, 1.6 and 3.2 times the maximum recommended human maintenance dose.*) Adverse effects on fetal growth and survival also were noted in one of two strains of mice at a dose of 5 mg/kg/day (approximately 0.04 times the maximum recommended human maintenance dose*).

* 600 mg in a 50 kg patient (doses compared on a body surface area basis)

Gastrointestinal

Certain gastrointestinal reactions (e.g., nausea, vomiting, constipation, and bad taste) occur frequently at the initiation of therapy when high doses are used. These may disappear on reduction of the dose.

Hepatic/Biliary/Pancreatic

Liver Enzyme Elevations

In patients with life-threatening arrhythmias, the potential risk of hepatic injury should be weighed against the potential benefit of amiodarone therapy. However, patients receiving oral APO-AMIODARONE should be monitored carefully for evidence of progressive hepatic injury.

Elevations of blood hepatic enzyme values - alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) - are seen commonly in patients with immediately life-threatening VT/VF. Interpreting elevated AST activity can be difficult because the values may be elevated in patients with recent myocardial infarction, congestive heart failure, and in those who have received multiple electrical defibrillations.

If the increase in hepatic enzyme levels exceeds three times normal or double in a patient with elevated baseline, discontinuation of APO-AMIODARONE should be considered.

Asymptomatic elevations of liver enzymes (AST/SGOT and ALT/SGPT) are frequently associated with the use of oral amiodarone hydrochloride. The mechanism whereby this hepatic effect occurs has not been defined. Phospholipidosis and fibrosis of the liver resembling alcoholic hepatitis or cirrhosis, accompanied by only a mild elevation of hepatic enzymes, have been reported in association with the use of oral amiodarone hydrochloride. Rises in hepatic enzymes, especially when associated with clinical signs and symptoms of hepatitis, or with asymptomatic hepatomegaly, may indicate a liver scan and, if needed, a liver biopsy with ultrastructural study. If serum enzyme levels increase significantly, or persist over time, consideration should be given to discontinuation or reducing the dose of amiodarone. Hepatic failure has been a rare cause of death in patients treated with oral amiodarone hydrochloride.

Approximately 54% of patients receiving I.V. amiodarone in clinical studies had baseline
elevations in liver enzyme values, and 13% had clinically significant elevations. In 81% of patients with baseline and on-therapy data available, the liver enzyme elevations either improved during therapy or remained at baseline levels. Baseline abnormalities in hepatic enzymes are not a contraindication to treatment.

Rare cases of fatal hepatocellular necrosis after treatment with I.V. amiodarone have been reported. Two patients, one 28 and the other 60 years of age, received an initial infusion of 1500 mg over 5 hours, a rate much higher than recommended. Both patients developed hepatic and renal failure within 24 hours after the start of I.V. amiodarone treatment and died on day 14 and day 4, respectively. Because these episodes of hepatic necrosis may have been due to the rapid rate of infusion and hypotension is related to the rate of infusion, the initial rate of infusion should be monitored closely and should not exceed that recommended.

Neurologic

Nervous System Disorders

Chronic administration of oral amiodarone in rare instances may lead to the development of peripheral neuropathy that may resolve when amiodarone is discontinued, but this resolution has been slow and incomplete.

Ophthalmologic

Loss of Vision

Cases of optic neuropathy and/or optic neuritis, usually resulting in visual impairment, have been reported in patients treated with amiodarone. In some cases, visual impairment has progressed to permanent blindness. Optic neuropathy and/or neuritis may occur at any time following initiation of therapy. A causal relationship to the drug has not been clearly established. If symptoms of visual impairment appear, such as changes in visual acuity and decreases in peripheral vision, prompt ophthalmic examination is recommended. Appearance of optic neuropathy and/or neuritis calls for re-evaluation of amiodarone therapy. The risks and complications of antiarrhythmic therapy with APO-AMIODARONE must be weighed against its benefits in patients whose lives are threatened by cardiac arrhythmias. Regular ophthalmic examination, including fundoscopy and slit-lamp examination, is recommended during administration of APO-AMIODARONE. (See “ADVERSE REACTIONS, Ophthalmological Abnormalities.”)

Ocular Abnormalities (Corneal Microdeposits)

Corneal micro-deposits appear in the majority of adults treated with amiodarone hydrochloride, they are usually discernible only by slit-lamp examination, but give rise to symptoms such as visual halos or blurred vision in as many as 10% of patients. Corneal microdeposits are reversible upon reduction of dose or termination of treatment. Asymptomatic microdeposits alone are not a reason to reduce dose or discontinue treatment. (See “ADVERSE REACTIONS, Ophthalmological Abnormalities”.)

Peri-Operative Considerations

Surgery

Occurrences of adult respiratory syndrome (ARDS) and low cardiac output syndrome have been reported postoperatively in patients receiving oral amiodarone hydrochloride therapy who have undergone either cardiac or noncardiac surgery. An intraaortic balloon pump augmentation has
been required in some patients with the low cardiac output syndrome at discontinuation of cardiopulmonary bypass. In the case of ARDS, although patients usually respond well to vigorous respiratory therapy, in rare instances the outcome has been fatal. A number of patients who developed ARDS were subjected to a high concentration of oxygen in the inspired air; this could have been a factor in the respiratory complications. Until further studies have been performed, it is recommended that FiO$_2$ and the determinants of oxygen delivery to the tissues (e.g., SaO$_2$, PaO$_2$) be closely monitored in patients on APO-AMIODARONE. Caution should also be exercised in considering APO-AMIODARONE patients for surgery in the presence of preoperative pulmonary dysfunction. However, as amiodarone has a very long half-life, withdrawal before surgery implies delaying operations by several weeks and putting patients at increased risk of malignant dysrhythmias. The ARDS in these cases has rarely been fatal.

Hypotension independent of, or associated with, discontinuation of cardiopulmonary bypass following open-heart surgery has been reported. Blood vessels may respond poorly to adrenoreceptor agonists. Atropine-resistant bradycardia and complete heart block have also been reported in patients being weaned from cardiopulmonary bypass.

Corneal Refractive Surgery

Patients should be advised that most manufacturers of corneal refractive laser surgery devices contraindicate that procedure in patients taking amiodarone.

Volatile anaesthetic agents: close peri-operative monitoring is recommended in patients undergoing general anaesthesia who are on amiodarone therapy as they may be more sensitive to the myocardial depressant and conduction effects of halogenated inhalation anaesthetics.

Respiratory

Intravenous and Oral Amiodarone

Pulmonary Toxicity

There have been post-marketing reports of acute-onset (days to weeks) pulmonary injury in patients treated with oral amiodarone hydrochloride with or without initial I.V. therapy. Findings have included pulmonary infiltrates and/or mass on X-ray, pulmonary alveolar hemorrhage, pleural effusion, bronchospasm, wheezing, fever, dyspnea, cough, hemoptysis, and hypoxia. Some cases have progressed to respiratory failure and/or death.

One of the most serious complications resulting from oral amiodarone hydrochloride therapy is pulmonary toxicity, characterized by pneumonitis. Clinical symptoms include cough, progressive dyspnea, accompanied by functional, radiographic, gallium-scan, weight loss, weakness, and pathological data consistent with pulmonary toxicity. On chest x-ray, there is a diffuse interstitial pattern lung involvement frequently with patchy alveolar infiltrates, particularly in the upper lobe. Predicting which patient will develop pulmonary toxicity has been difficult (see **“CONTRAINDICATIONS”**). Pulmonary toxicity can appear abruptly either early or late during therapy and it commonly mimics viral or bacterial infection or worsening congestive heart failure. The relationship of pulmonary toxicity to duration of therapy, maintenance dose, and total dose is unclear. The majority of patients have recovered with this management, although some fatalities have occurred. Therefore, when APO-AMIODARONE therapy is initiated, a baseline chest X-ray and pulmonary-function tests, including diffusion capacity, should be
performed. The patient should return for a history, physical exam, and chest X-ray every 3 to 6 months.

Pulmonary toxicity secondary to amiodarone seems to result from either indirect or direct toxicity as represented by hypersensitivity pneumonitis (including eosinophilic pneumonia) or interstitial/alveolar pneumonitis, respectively at rates as high as 10 to 17% in patients with ventricular arrhythmias given doses around 400 mg/day. Pulmonary toxicity has been fatal about 10% of the time.

Recent reports suggest that the use of lower loading and maintenance doses of amiodarone are associated with a decreased incidence of amiodarone-induced pulmonary toxicity.

Hypersensitivity pneumonitis usually appears earlier in the course of therapy, and rechallenging these patients with amiodarone results in a more rapid recurrence of greater severity. Bronchoalveolar lavage is the procedure of choice to confirm this diagnosis, which can be made when a T suppressor/cytotoxic (CD8-positive) lymphocytosis is noted. Steroid therapy should be instituted and amiodarone therapy discontinued in these patients.

Interstitial/alveolar pneumonitis may result from the release of oxygen radicals and/or phospholipidosis and is characterized by findings of diffuse alveolar damage, interstitial pneumonitis or fibrosis in lung biopsy specimens. Phospholipidosis (foamy cells, foamy macrophages), due to inhibition of phospholipase, will be present in most cases of amiodarone-induced pulmonary toxicity; however, these changes also are present in approximately 50% of all patients on amiodarone therapy. These cells should be used as markers of therapy, but not as evidence of toxicity. A diagnosis of amiodarone-induced interstitial/alveolar pneumonitis should lead, at a minimum, to dose reduction or, preferably to withdrawal of the amiodarone to establish reversibility, especially if other acceptable antiarrhythmic therapies are available. Where these measures have been instituted, a reduction in symptoms of amiodarone-induced pulmonary toxicity was usually noted within the first week, and a clinical improvement was greatest in the first two to three weeks. Chest X-ray changes usually resolve within two to four months. According to some experts steroids may prove beneficial. Prednisone in doses of 40 to 60 mg/day or equivalent doses of other steroids have been given and tapered over the course of several weeks depending upon the condition of the patient. In some cases rechallenge with amiodarone at a lower dose has not resulted in return of toxicity.

In a patient receiving APO-AMIODARONE (amiodarone HCl), any new respiratory symptoms should suggest the possibility of pulmonary toxicity, and the history, physical exam, chest X-ray, and pulmonary-function tests (with diffusion capacity) should be repeated and evaluated. A 15% decrease in diffusion capacity has a high sensitivity but only a moderate specificity for pulmonary toxicity; as the decrease in diffusion capacity approaches 30%, the sensitivity decreases but the specificity increases. A gallium-scan also may be performed as part of the diagnostic workup.

Fatalities, secondary to pulmonary toxicity, have occurred in approximately 10% of cases. However, in patients with life-threatening arrhythmias, discontinuation of APO-AMIODARONE therapy due to suspected drug-induced pulmonary toxicity should be undertaken with caution, as
the most common cause of death in these patients is sudden cardiac death. Therefore, every effort should be made to rule out other causes of respiratory impairment (i.e., congestive heart failure with Swan-Ganz catheterization if necessary, respiratory infection, pulmonary embolism, malignancy etc.) before discontinuing APO-AMIODARONE in these patients. In addition, bronchoalveolar lavage, transbronchial lung biopsy and/or open lung biopsy may be necessary to confirm the diagnosis, especially in those cases where no acceptable alternative therapy is available.

If a diagnosis of amiodarone-induced hypersensitivity pneumonitis is made, APO-AMIODARONE should be discontinued, and treatment with steroids should be instituted. If a diagnosis of amiodarone-induced interstitial/alveolar pneumonitis is made, steroid therapy should be instituted and, preferably, APO-AMIODARONE discontinued or, at a minimum, reduced in dosage. Some cases of amiodarone-induced interstitial/alveolar pneumonitis may resolve following a reduction in APO-AMIODARONE dosage in conjunction with the administration of steroids. In some patients, rechallenge at a lower dose has not resulted in return of interstitial/alveolar pneumonitis; however, in some patients (perhaps because of severe alveolar damage) the pulmonary lesions have not been reversible.

Only 1 of more than 1000 patients treated with I.V. amiodarone in clinical studies developed pulmonary fibrosis. For that patient, the condition was diagnosed 3 months after treatment with I.V. amiodarone, during which time she had received oral amiodarone. I.V. amiodarone therapy should be discontinued if a diagnosis of pulmonary fibrosis is made.

During clinical studies of I.V. amiodarone, 2% of patients were reported to have adult respiratory distress syndrome (ARDS). ARDS is a disorder characterized by bilateral, diffuse pulmonary infiltrates with pulmonary edema and varying degrees of respiratory insufficiency. The clinical and radiographic picture can arise after a variety of lung injuries, such as those resulting from trauma, shock, prolonged cardiopulmonary resuscitation, and aspiration pneumonia, conditions present in many of the patients enrolled in the clinical studies. It is not possible to determine what role, if any, I.V. amiodarone played in causing or exacerbating the pulmonary disorder in those patients.

Sexual Function/Reproduction

Urogenital System Disorders

Oral amiodarone hydrochloride-induced epididymitis has been observed in some patients. This form of epididymitis is rare, benign, self-limited, and requires no treatment. Physicians should be aware of it to protect their patients from unnecessary invasive urologic examinations and antibiotic therapy.

Skin

Dermatologic Disorders / Photosensitivity

Oral amiodarone induces photosensitization in about 10% of patients. Sunscreen preparations or protective clothing may afford some protection to individual patients experiencing photosensitization. Blue-grey discoloration of exposed skin has been reported during long-term treatment. With discontinuation of therapy, the pigmentation regresses slowly over a period of up to several years. The risk may be increased in patients of fair complexion or those with excessive
sun exposure, and may be related to cumulative dose and duration of therapy.

Severe Bullous reactions

Intravenous and Oral Amiodarone

Life-threatening or even fatal cutaneous reactions: Steven-Johnson syndrome (SJS), Toxic Epidermal Necrolysis (TEN) have been reported (See ADVERSE REACTIONS). If symptoms or signs of SJS, TEN (e.g. progressive skin rash often with blisters or mucosal lesions) are present amiodarone treatment should be discontinued immediately.

Special Populations

Pregnant Women

Amiodarone has been shown to be embryotoxic in some animal species. In three different human case reports, both the parent drug and its DEA metabolite have been shown to pass through the placenta, quantitatively ranging between 10% and 50% of human maternal serum concentrations. Although amiodarone use during pregnancy is uncommon, there have been a small number of published reports of congenital goiter/hypothyroidism and hyperthyroidism. Therefore, amiodarone should be used during pregnancy only if the potential benefit to the mother justifies the risk to the fetus.

In addition to causing infrequent congenital goiter/hypothyroidism and hyperthyroidism (See WARNINGS AND PRECAUTIONS, Neonatal Hypo- or Hyperthyroidism), amiodarone has caused a variety of adverse effects in animals.

In a reproductive study in which amiodarone was given intravenously to rabbits at dosages of 5, 10, or 25 mg/kg per day (about 0.1, 0.3, and 0.7 times the maximum recommended human dose [MRHD] on a body surface area basis), maternal deaths occurred in all groups, including controls. Embryotoxicity (as manifested by fewer full-term fetuses and increased resorptions with concomitantly lower litter weights) occurred at dosages of 10 mg/kg and above. No evidence of embryotoxicity was observed at 5 mg/kg and no teratogenicity was observed at any dosages.

In a teratology study in which amiodarone was administered by continuous i.v. infusion to rats at dosages of 25, 50, or 100 mg/kg per day (about 0.4, 0.7, and 1.4 times the MRHD when compared on a body surface area basis), maternal toxicity (as evidenced by reduced weight gain and food consumption) and embryotoxicity (as evidenced by increased resorptions, decreased live litter size, reduced body weights, and retarded sternum and metacarpal ossification) were observed in the 100 mg/kg group. Intravenous amiodarone should be used during pregnancy only if the potential benefit to the mother justifies the risk to the fetus.

Use During Labour and Delivery

It is not known whether the use of amiodarone during labour or delivery has any immediate or delayed adverse effects. Preclinical studies in rodents have not shown any effect on the duration of gestation or on parturition.

Nursing Women

Amiodarone and its DEA metabolite are excreted in human milk, suggesting that breast-feeding
could expose the nursing infant to a significant dose of the drug. Nursing offspring of lactating rats administered amiodarone have demonstrated reduced viability and reduced body weight gains. The risk of exposing the infant to amiodarone should be weighed against the potential benefit of arrhythmia suppression in the mother. The mother should be advised to discontinue nursing.

Pediatrics (<18 years of age)
The safety and efficacy of amiodarone in children have not been established; therefore, its use in children is not recommended.

Geriatrics (> 65 years of age)
Clinical studies of amiodarone tablets did not include sufficient number of subjects aged 65 years and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Monitoring and Laboratory Tests
APO-AMIODARONE should be used only by physicians familiar with and with access to (directly or referral) the use of all available modalities for treating recurrent life-threatening ventricular arrhythmias, and who have access to appropriate monitoring facilities, including in-hospital and ambulatory continuous electrocardiographic monitoring and electrophysiologic technique.

In addition, the following should be considered and/or monitored for patient on amiodarone:

Oral Amiodarone

Electrolyte Disturbances
Since antiarrhythmic drugs may be ineffective or may be arrhythmogenic in any patient with potassium or magnesium deficiency, patients with hypokalemia or hypomagnesemia should have the condition corrected before instituting APO-AMIODARONE tablets therapy (amiodarone HCl), since these disorders can exaggerate the degree of QTc prolongation and increase the potential for torsades de pointes. Special attention should be given to electrolyte and acid-base in patients experiencing severe or prolonged diarrhea or in patients receiving concomitant diuretics. Use caution when co-administering APO-AMIODARONE with drugs which may induce hypokalemia and/or hypomagnesemia.

Thyroid Function
Thyroid function should be monitored prior to treatment and periodically thereafter, particularly in elderly patients, and in any patient with a history of thyroid nodules, goiter, or other thyroid dysfunction. Because of the slow elimination of amiodarone and its metabolites, high plasma iodide levels, altered thyroid function, and abnormal thyroid-function tests may persist for several weeks or even months following APO-AMIODARONE withdrawal.

Liver Enzyme Elevations
In patients with life-threatening arrhythmias, the potential risk of hepatic injury should be weighed against the potential benefit of amiodarone therapy. However, patients receiving oral APO-AMIODARONE should be monitored carefully for evidence of progressive hepatic injury.

QTc Prolongation
Patients should be monitored carefully for QTc prolongation during amiodarone therapy.

Surgery
It is recommended that FiO₂ and the determinants of oxygen delivery to the tissues (e.g., SaO₂, PaO₂) be closely monitored in patients on APO-AMIODARONE.

Elderly
During chronic treatment with oral amiodarone, close monitoring may be prudent for elderly patients.

Ventricular Dysfunction
During chronic treatment with oral amiodarone, close monitoring may be prudent for patients with severe left ventricular dysfunction.

Monitoring Effectiveness
Predicting the effectiveness of any antiarrhythmic agent in long-term prevention of recurrent ventricular tachycardia and ventricular fibrillation is difficult and controversial, with highly qualified investigators recommending use of ambulatory monitoring, programmed electrical stimulation with various stimulation regimens, or a combination of these, to assess response. There is no present consensus on many aspects of how best to assess effectiveness, but there is a reasonable consensus on some aspects:

1. If a patient with a history of cardiac arrest does not manifest a hemodynamically unstable arrhythmia during electrocardiographic monitoring prior to treatment, assessment of the effectiveness of APO-AMIODARONE requires some provocative approach, either exercise or programmed electrical stimulation (PES).

2. Whether provocation is also needed in patients who do manifest their life-threatening arrhythmia spontaneously is not settled, but there are reasons to consider PES or other provocation in such patients. In the fraction of patients whose PES-inducible arrhythmia can be made noninducible by amiodarone hydrochloride (a fraction that has varied widely in various series from less than 10% to almost 40%, perhaps due to different stimulation criteria), the prognosis has been almost uniformly excellent, with very low recurrence (ventricular tachycardia or sudden death) rates. More controversial is the meaning of continued inducibility. There has been an impression that continued inducibility in amiodarone hydrochloride patients may not foretell a poor prognosis but, in fact, many observers have found greater recurrence rates in patients who remain inducible than in those who do not. A number of criteria have been proposed, however, for identifying patients who remain inducible but who seem likely nonetheless to do well on amiodarone hydrochloride. These criteria include increased difficulty of induction (more stimuli or more rapid stimuli), which has been reported to predict a lower rate of recurrence, and ability to tolerate the induced ventricular tachycardia without severe
symptoms, a finding that has been reported to correlate with better survival but not with lower recurrence rates. While these criteria require confirmation and further study in general, easier inducibility or poorer tolerance of the induced arrhythmia should suggest consideration of a need to revise treatment.

Several predictors of success not based on PES have also been suggested, including complete elimination of all nonsustained ventricular tachycardia on ambulatory monitoring and very low premature ventricular-beat rates (less than 1 VPB/1,000 normal beats).

While these issues remain unsettled for amiodarone hydrochloride, as for other agents, the prescriber of APO-AMIODARONE should have access to (direct or through referral), and familiarity with, the full range of evaluatory procedures used in the care of patients with life-threatening arrhythmias.

It is difficult to describe the effectiveness rates of amiodarone hydrochloride, as these depend on the specific arrhythmia treated, the success criteria used, the underlying cardiac disease of the patient, the number of drugs tried before resorting to amiodarone hydrochloride, the duration of follow-up, the dose of amiodarone hydrochloride, the use of additional antiarrhythmic agents, and many other factors. As amiodarone hydrochloride has been studied principally in patients with refractory life-threatening ventricular arrhythmias, in whom drug therapy must be selected on the basis of response and cannot be assigned arbitrarily, randomized comparisons with other agents or placebo have not been possible. Reports of series of treated patients with a history of cardiac arrest and mean follow-up of one year or more have given mortality (due to arrhythmia) rates that were highly variable, ranging from less than 5% to over 30%, with most series in the range of 10 to 15%. Overall arrhythmia-recurrence rates (fatal and nonfatal) also were highly variable (and, as noted above, depended on response to PES and other measures), and depend on whether patients who do not seem to respond initially are included. In most cases, considering only patients who seemed to respond well enough to be placed on long-term treatment, recurrence rates have ranged from 20 to 40% in series with a mean follow-up of a year or more.

ADVERSE REACTIONS

Adverse Drug Reaction Overview
Oral APO-AMIODARONE (amiodarone HCl)
Because of the extensive distribution of amiodarone in body tissues, and the prolonged time required for its elimination from the body following discontinuation of long-term therapy, the relationship between adverse reactions and dosage and duration of therapy, has not been fully established. For some adverse reactions—for example, corneal microdeposits—a relationship to dosage and duration of therapy has been established, so that corneal deposits are reversible with dose-reduction or with discontinuation of therapy. However, for other adverse reactions—for example, fibrosing alveolitis or peripheral neuropathy—the dose relationship and the reversibility of the adverse reaction have not been established. Certain gastrointestinal reactions (e.g., nausea, vomiting, constipation, and bad taste) and central nervous system reactions (e.g., fatigue, headaches, vertigo, nightmares, and sleeplessness) occur frequently at the initiation of therapy when high doses are used. These may disappear on reduction of the dose. The time and dose relationship of adverse events are under continued study.
The most serious and potentially life-threatening adverse effects associated with the use of amiodarone are pulmonary fibrosis, the aggravation of arrhythmias, and cirrhotic hepatitis. Published data reflecting the North American experience with chronic oral amiodarone hydrochloride therapy suggest that amiodarone-associated adverse drug reactions are very common, having occurred in approximately 75% of patients taking 400 mg or more per day; these adverse events have led to the discontinuation of amiodarone treatment in 7% to 18% of patients. The adverse reactions most frequently requiring discontinuation of amiodarone hydrochloride have included pulmonary infiltrates or fibrosis, paroxysmal ventricular tachycardia, congestive heart failure, and elevation of liver enzymes. Other symptoms causing discontinuations less often have included visual disturbances, solar dermatitis, blue skin discoloration, hyperthyroidism, and hypothyroidism.

Clinical Trial Adverse Drug Reactions

Because clinical trials are conducted under very specific conditions the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse drug reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

Please see Tables 1 (oral amiodarone hydrochloride) and 2 (intravenous amiodarone), below.

Commonly Observed Adverse Reactions

Intravenous Amiodarone

In a total of 1836 patients in controlled and uncontrolled clinical trials, 14% of patients received I.V. amiodarone for up to 1 week, 5% received it for up to 2 weeks, 2% received it for up to 3 weeks, and 1% received it for more than 3 weeks, without an increased incidence of serious adverse events. The mean duration of therapy in these studies was 5.6 days.

Overall, treatment was discontinued in 9% of the patients because of adverse events. The most common serious adverse events leading to discontinuation of I.V. amiodarone therapy were ventricular tachycardia (2%), hypotension (2%), cardiac arrest (asystole/cardiac arrest/electromechanical dissociation) (1%), and cardiogenic shock (1%).

The following adverse events are based upon retrospective multicentre analysis of 241 patients treated at various doses of amiodarone for 2 to 1515 days (mean duration: 441.3 days).

Table 2 lists the most common (incidence ≥ 1%) adverse drug reactions during I.V. amiodarone therapy that were collected from controlled and open-label clinical trials involving 1836 patients with hemodynamically unstable VT or VF.

TABLE 1 – INCIDENCE OF ADVERSE EVENTS IN PATIENTS RECEIVING ORAL AMIODARONE HYDROCHLORIDE

<table>
<thead>
<tr>
<th>Body System</th>
<th>Incidence, %</th>
<th>Adverse Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=241</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body System</th>
<th>Incidence, %</th>
<th>Adverse Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>n=241</td>
<td>Nausea, vomiting.</td>
</tr>
<tr>
<td></td>
<td>10-33</td>
<td>Constipation, anorexia.</td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td>Abdominal pain, dyspepsia, diarrhea, abnormal taste, dry mouth.</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>Solar dermatitis/photosensitivity.</td>
</tr>
<tr>
<td>Dermatologic</td>
<td>4-9</td>
<td>Blue skin discolouration, rash.</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>Alopecia, onycholysis.</td>
</tr>
<tr>
<td>Neurologic</td>
<td>4-9</td>
<td>Malaise/fatigue, tremor/abnormal involuntary movements, lack of coordination, abnormal gait/ataxia, dizziness, paresthesias.</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>Decreased libido/impotence, insomnia and other sleep disturbances, headache, cognitive disturbances and disorders of alertness, general weakness, peripheral motor and sensory neuropathies.</td>
</tr>
<tr>
<td></td>
<td><1</td>
<td>Tinnitus.</td>
</tr>
<tr>
<td>Ophthalmologic</td>
<td>10-33</td>
<td>Corneal microdeposits.</td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td>Visual disturbances.</td>
</tr>
<tr>
<td></td>
<td>up to 2</td>
<td>Optic neuropathology with visual impairment/decreased acuity*.</td>
</tr>
<tr>
<td>Hepatic</td>
<td>4-9</td>
<td>Hepatomegaly, abnormal liver function test results.</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>Non-specific hepatic disorders.</td>
</tr>
<tr>
<td>Respiratory</td>
<td>4-9</td>
<td>Pulmonary inflammation or fibrosis.</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>1-3</td>
<td>Congestive heart failure, cardiac arrhythmias, SA node dysfunction.</td>
</tr>
<tr>
<td></td>
<td><1</td>
<td>Hypotension, cardiac conduction abnormalities.</td>
</tr>
<tr>
<td>Thyroid</td>
<td>1-3</td>
<td>Hyperthyroidism, hypothyroidism.</td>
</tr>
<tr>
<td></td>
<td><1</td>
<td>Goiter.</td>
</tr>
<tr>
<td>Other</td>
<td>1-3</td>
<td>Flushing, coagulation abnormalities.</td>
</tr>
<tr>
<td></td>
<td><1</td>
<td>Spontaneous ecchymosis, epididymitis.</td>
</tr>
</tbody>
</table>

* Based on one retrospective study from 1981 to June 1986 at the Mayo Clinic, up to 2% optic neuropath with visual impairment/decreased acuity."
TABLE 2 - SUMMARY TABULATION OF ADVERSE DRUG REACTIONS IN PATIENTS RECEIVING AMIODARONE HYDROCHLORIDE I.V. AMIODARONE IN CONTROLLED AND OPEN-LABEL STUDIES (≥1% INCIDENCE)

<table>
<thead>
<tr>
<th>Study Event</th>
<th>Controlled Trials (N=814)</th>
<th>Open-Label Trials (N=1022)</th>
<th>Total Incidence (N=1836)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Adverse Reactions</td>
<td>412 (50.6%)</td>
<td>384 (37.5%)</td>
<td>796 (43.3%)</td>
</tr>
<tr>
<td>Body as a Whole</td>
<td>54 (6.6%)</td>
<td>32 (3.1%)</td>
<td>86 (4.6%)</td>
</tr>
<tr>
<td>Fever</td>
<td>24 (2.9%)</td>
<td>13 (1.2%)</td>
<td>37 (2.0%)</td>
</tr>
<tr>
<td>Cardiovascular System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>15 (1.8%)</td>
<td>9 (<1%)</td>
<td>24 (1.3%)</td>
</tr>
<tr>
<td>AV Block</td>
<td>14 (1.5%)</td>
<td>12 (1.2%)</td>
<td>26 (1.4%)</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>49 (6.0%)</td>
<td>41 (4.0%)</td>
<td>90 (4.9%)</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>18 (2.2%)</td>
<td>21 (2.0%)</td>
<td>39 (2.1%)</td>
</tr>
<tr>
<td>Heart Arrest</td>
<td>29 (3.5%)</td>
<td>26 (2.5%)</td>
<td>55 (2.9%)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>165 (20.2%)</td>
<td>123 (12.0%)</td>
<td>288 (15.6%)</td>
</tr>
<tr>
<td>Nodal Arrhythmia</td>
<td>15 (1.8%)</td>
<td>15 (1.4%)</td>
<td>30 (1.6%)</td>
</tr>
<tr>
<td>QT Interval Prolonged</td>
<td>15 (1.8%)</td>
<td>4 (<1%)</td>
<td>19 (1.0%)</td>
</tr>
<tr>
<td>Shock</td>
<td>13 (1.5%)</td>
<td>12 (1.1%)</td>
<td>25 (1.3%)</td>
</tr>
<tr>
<td>Ventricular Fibrillation</td>
<td>12 (1.4%)</td>
<td>13 (1.2%)</td>
<td>25 (1.3%)</td>
</tr>
<tr>
<td>Ventricular Tachycardia</td>
<td>15 (1.8%)</td>
<td>30 (2.9%)</td>
<td>45 (2.4%)</td>
</tr>
<tr>
<td>Digestive System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>8 (<1%)</td>
<td>12 (1.1%)</td>
<td>20 (1.0%)</td>
</tr>
<tr>
<td>Liver Function Tests Abnormal</td>
<td>35 (4.2%)</td>
<td>29 (2.8%)</td>
<td>64 (3.4%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>29 (3.5%)</td>
<td>43 (4.2%)</td>
<td>72 (3.9%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>16 (1.9%)</td>
<td>17 (1.6%)</td>
<td>33 (1.7%)</td>
</tr>
<tr>
<td>Hemic and Lymphatic System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>34 (4.1%)</td>
<td>34 (3.3%)</td>
<td>68 (3.7%)</td>
</tr>
<tr>
<td>Metabolic and Nutritional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGOT Increased (AST)</td>
<td>14 (1.7%)</td>
<td>6 (<1%)</td>
<td>20 (1.0%)</td>
</tr>
<tr>
<td>SGPT Increased (ALT)</td>
<td>14 (1.7%)</td>
<td>5 (<1%)</td>
<td>19 (1.0%)</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung Edema</td>
<td>54 (6.6%)</td>
<td>61 (5.9%)</td>
<td>115 (6.2%)</td>
</tr>
<tr>
<td>Respiratory Disorder</td>
<td>6 (<1%)</td>
<td>15 (1.4%)</td>
<td>21 (1.1%)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>11 (1.3%)</td>
<td>8 (<1%)</td>
<td>19 (1.0%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Event</th>
<th>Controlled Trials (N=814)</th>
<th>Open-Label Trials (N=1022)</th>
<th>Total Incidence (N=1836)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urogenital System</td>
<td>27 (3.3%)</td>
<td>30 (2.9%)</td>
<td>57 (3.1%)</td>
</tr>
<tr>
<td>Kidney Function Abnormal</td>
<td>8 (<1%)</td>
<td>16 (1.5%)</td>
<td>24 (1.3%)</td>
</tr>
</tbody>
</table>

Ophthalmological Abnormalities: Corneal microdeposits are apparent upon slit-lamp examination in virtually all adult patients who have taken amiodarone for longer than 6 months. These deposits may give rise to symptoms such as visual halos or blurred vision (see WARNINGS AND PRECAUTIONS). Other reported amiodarone-associated abnormalities have included photophobia, corneal degeneration, papilledema, photosensitivity, eye discomfort, dry eyes, scotoma, lens opacities, and macular degeneration, optic neuropathy and/or optic neuritis, in some cases progressing to permanent blindness. (See “WARNINGS AND PRECAUTIONS, Ophthalmologic”.)

Neurological Abnormalities: Occurring in 20% to 40% of patients, these common problems have included ataxia, tremor, fatigue, dizziness, weakness, sleep disorders, headaches, cognitive disorders, disturbances of alertness, peripheral motor and sensory neuropathies, proximal muscle weakness, impotence (see “WARNINGS AND PRECAUTIONS, Neurologic”) and pseudotumor cerebri. There have been spontaneous reports of demyelinating polyneuropathy.

Pulmonary Abnormalities: In some studies symptomatic pulmonary disease has been detected at rates as high as 10% to 15%, whereas asymptomatic abnormalities of pulmonary diffusion capacity have been demonstrated at greater than twice that incidence. Pulmonary toxicity has been fatal about 10% of the time (see “WARNINGS AND PRECAUTIONS, Respiratory”).

Cardiovascular Abnormalities: Exacerbation of arrhythmia has had a reported incidence of about 2% to 5% in most series (new ventricular fibrillation, incessant ventricular tachycardia, increased resistance to cardioversion, and paroxysmal polymorphic ventricular tachycardia (torsades de pointes). In addition, symptomatic bradycardia or sinus arrest with suppression of escape foci has occurred in 2% to 4% of patients. Congestive heart failure has occurred in approximately 3% of patients. Second degree AV block and left bundle branch block (LBBB) have occurred in less than 1% of patients, vasculitis and angioedema have also been reported. Hypotension independent of - as well as associated with - discontinuation of cardiopulmonary bypass following open heart surgery has also been reported (see “WARNINGS AND PRECAUTIONS, Cardiovascular”).

Gastrointestinal Abnormalities: Complaints of this nature have occurred in about 25% of patients and have included nausea, vomiting, constipation, anorexia, abnormal taste and smell, abnormal salivation, dyspepsia, abdominal pain, and diarrhoea (see “WARNINGS AND PRECAUTIONS, Gastrointestinal”).

Hepatic Abnormalities: Abnormal elevations of serum levels of enzymes associated with hepatic dysfunction have occurred in approximately 15% of patients. Symptomatic hepatitis has occurred in less than 1% of patients, and cholestatic hepatitis and cirrhosis have been reported (see “WARNINGS AND PRECAUTIONS, Hepatic/Biliary/Pancreatic”). The frequency of
rare serious liver injury, abnormal liver-function tests, hepatitis, cholestatic hepatitis and cirrhosis is undetermined. Overt liver disease can occur however, and has been fatal in a few cases.

Dermatologic Abnormalities: These have occurred in approximately 15% of patients, with photosensitivity (10% of patients) being the most common. Blue-grey skin pigmentation has been reported in 2% to 3% of patients. Hair loss (alopecia) has been observed in up to 4% of patients. Other amiodarone-associated phenomena reported with less than 1% incidence have included non-specific skin eruptions, pruritus, acquired keratoderma, hyperhidrosis, onycholysis, generalized pustular psoriasis, vasculitis and polyserositis, and toxic epidermal necrolysis (sometimes fatal) (see “WARNINGS AND PRECAUTIONS, Dermatologic Disorders / Photosensitivity”).

Thyroid Abnormalities: Amiodarone-associated hypothyroidism has been reported in 2% to 4% of patients in most series but in 8% to 10% of patients with other series: hyperthyroidism has been reported in 1% to 3% of patients (see “WARNINGS AND PRECAUTIONS, Thyroid Dysfunction”).

Post-Market Adverse Drug Reactions

APO-AMIODARONE intravenous is not marketed.

In post-marketing surveillance, hypotension (sometimes fatal), sinus arrest, anaphylactic/anaphylactoid reaction (including shock), angioedema, eosinophilic pneumonia, hepatitis, cholestatic hepatitis, cirrhosis, pancreatitis/acute pancreatitis, dry mouth, constipation, renal impairment, renal insufficiency, acute renal failure, bronchospasm, possibly fatal respiratory disorders (including distress, failure, arrest, and ARDS), bronchilitis obliterans organizing pneumonia (possibly fatal), fever, dyspnea, cough, hemoptysis, wheezing, hypoxia, pulmonary infiltrates and/or mass, pulmonary alveolar hemorrhage, pleural effusion, pleuritis, pseudotumor cerebri, parkinsonian symptoms such as akinesia and bradykinesia (sometimes reversible with discontinuation of therapy), syndrome of inappropriate antidiuretic hormone secretion (SIADH), thyroid nodules/thyroid cancer, eczema, urticaria, erythema multiforme, exfoliative dermatitis, severe skin reactions sometimes fatal including toxic epidermal necrolysis/Stevens-Johnson syndrome, bullous dermatitis and drug reactions with eosinophilia and systemic symptoms (DRESS), skin cancer, vasculitis, pruritus, hemolytic anemia, aplastic anemia, pancytopenia, neutropenia, thrombocytopenia, agranulocytosis, granuloma including bone marrow granuloma, myopathy, muscle weakness, rhabdomyolysis, demyelinating polyneuropathy, hallucination, confusional state, disorientation, delirium, epididymitis, decreased appetite, parosmia, libido decreased and impotence, also have been reported in patients receiving amiodarone.

Women receiving amiodarone have been reported to be at greater risk of experiencing torsade de pointes.

Also, in patients receiving recommended dosages, there have been postmarketing reports of the following injection site reactions: pain, erythema, edema, pigment changes, venous thrombosis, phlebitis, thrombophlebitis, cellulitis, necrosis, and skin sloughing (see DOSAGE AND
TABLE 3 - SUMMARY OF DRUG INTERACTIONS WITH AMIODARONE

Drugs Whose Effects May Be Increased By Amiodarone

<table>
<thead>
<tr>
<th>Concomitant Drug</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>Increases prothrombin time.</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Oral amiodarone, increases digoxin serum concentration by 70% after one day. May reach toxic levels with resultant clinical toxicity.</td>
</tr>
<tr>
<td>Digitalis</td>
<td>With oral amiodarone, the need for digitalis therapy should be reviewed and the dose reduced by approximately 50% or discontinued. If digitalis treatment is continued, serum levels should be closely monitored and patients observed for clinical evidence of toxicity. These precautions probably should apply to digitoxin administration as well.</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>Caution should be exercised when amiodarone is co-administered with dabigatran due to the risk of bleeding. It may be necessary to adjust the dosage of dabigatran as per its label.</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Increases quinidine serum concentration by 33% after two days. Quinidine dose should be reduced by 1/3 when administered with amiodarone.</td>
</tr>
<tr>
<td>Procainamide</td>
<td>Increases plasma concentrations of procainamide and n-acetyl procainamide by 55% and 33%, respectively if taken for less than 7 days. Procainamide dose should be reduced by 1/3 when administered with amiodarone.</td>
</tr>
<tr>
<td>Flecainide</td>
<td>Plasma levels of flecainide have been reported to increase in the presence of oral amiodarone; because of this, the dosage of flecainide should be adjusted when these drugs are administered concomitantly.</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>Oral: Sinus bradycardia was observed in a patient receiving oral amiodarone who was given lidocaine for local anaesthesia. I.V.: Seizure associated with increased lidocaine concentrations was observed in one patient.</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Increases phenytoin serum concentration.</td>
</tr>
<tr>
<td>Disopyramide</td>
<td>Increases QT prolongation which could cause arrhythmia.</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>May cause hypotension, bradycardia, decreased cardiac output.</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>Administered in combination with oral amiodarone, produces</td>
</tr>
</tbody>
</table>
persistently elevated plasma concentrations of cyclosporine resulting in elevated creatinine, despite reduction in dose of cyclosporine.

| Fluoroquinolones, Macrolide Antibiotics, Azoles | Are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without torsades de pointes, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. |

TABLE 4 - SUMMARY OF DRUG INTERACTIONS WITH AMIODARONE

Drugs That May Interfere With the Actions of Amiodarone

<table>
<thead>
<tr>
<th>Concomitant Drug</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholestyramine</td>
<td>Increases enterohepatic recirculation of amiodarone and may reduce serum levels and t½.</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>Increases serum amiodarone levels.</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Decreases serum amiodarone levels.</td>
</tr>
</tbody>
</table>

Volatile Anaesthetic Agents

Close perioperative monitoring is recommended in patients undergoing general anaesthesia who are on amiodarone therapy as they may be more sensitive to the myocardial depressant and conduction effect of halogenated inhalation anaesthetics.

Beta Blockers

Amiodarone should be used with caution in patients receiving β-receptor blocking agents (e.g., propranolol, a CYP3A4 inhibitor) because of the possible potentiation of bradycardia, sinus arrest, and AV block. If necessary, amiodarone can continue to be used after insertion of a pacemaker in patients with severe bradycardia or sinus arrest.

Calcium Channel Antagonists

Amiodarone should be used with caution in patients receiving calcium channel antagonists (e.g., verapamil, a CYP3A4 substrate, and diltiazem, a CYP3A4 inhibitor) because of the possible potentiation of bradycardia, sinus arrest, and AV block. If necessary, amiodarone can continue to be used after insertion of a pacemaker in patients with severe bradycardia or sinus arrest.

Anticoagulants

Potentiation of warfarin-type (CYP2C9 and CYP3A4 substrate) anticoagulant response is almost always seen in patients receiving amiodarone and can result in serious or fatal bleeding. Since the concomitant administration of warfarin with amiodarone increases the prothrombin time by 100% after 3 to 4 days, the dose of warfarin should be reduced by one-third to one-half, and prothombin times should be monitored closely.

Clopidogrel, an inactive thienopyridine prodrug, is metabolized in the liver by CYP3A4 to an active metabolite. A potential interaction between clopidogrel and amiodarone resulting in ineffective inhibition of platelet aggregation has been reported.
Antidepressants
Trazodone, an antidepressant, is metabolized primarily by CYP3A4. QT interval prolongation and torsade de pointes have been reported with the co-administration of trazodone and amiodarone.

Drugs Affecting Cardiac Conduction
Hemodynamic and electrophysiologic interactions have also been observed after concomitant administration with propranolol, diltiazem, and verapamil.

Drugs prolonging QT
Co-administration of amiodarone with drugs known to prolong the QT interval must be based on a careful assessment of the potential risks and benefits for each patient since the risk of torsade de pointes may increase and patients should be monitored for QT prolongation.

Antiarrhythmics
In general, combination of amiodarone with other antiarrhythmic therapy should be reserved for patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent or incompletely responsive to amiodarone. During transfer to amiodarone the dose levels of previously administered agents should be reduced by 30 to 50% several days after the addition of amiodarone, when arrhythmia suppression should be beginning.

The continued need for the other antiarrhythmic agent should be reviewed after the effects of amiodarone have been established, and discontinuation ordinarily should be attempted. If the treatment is continued, these patients should be particularly carefully monitored for adverse effects, especially conduction disturbances and exacerbation of tachyarrhythmias, as amiodarone is continued. In amiodarone-treated patients who require additional antiarrhythmic therapy, the initial dose of such agents should be approximately half of the usual recommended dose.

Interactions via Cytochrome P450 System
Amiodarone is metabolized to desethylamiodarone by the cytochrome P450 (CYP450) enzyme group, specifically cytochrome P450 3A4 (CYP3A4) and CYP2C8. The CYP3A4 isoenzyme is present in both the liver and intestines (see CLINICAL PHARMACOLOGY, Pharmacokinetics). Amiodarone is a substrate and an inhibitor of CYP3A4 and a substrate of p-glycoprotein. Therefore, amiodarone has the potential for interactions with drugs or substances that may be substrates, inhibitors or inducers of CYP3A4 and substrates of p-glycoprotein. While only a limited number of in vivo drug-drug interactions with amiodarone have been reported, chiefly with the oral formulation, the potential for other interactions should be anticipated. This is especially important for drugs associated with serious toxicity, such as other antiarrhythmics. If such drugs are needed, their dose should be reassessed and, where appropriate, plasma concentration measured. In view of the long and variable half-life of amiodarone, potential for drug interactions exists not only with concomitant medication but also with drugs administered after discontinuation of amiodarone.

Examples of drugs that may have serum concentrations increased by amiodarone
Amiodarone inhibits p-glycoprotein and certain CYP450 enzymes (enzyme inhibition: CYP3A4, CYP2C9, CYP2D6). This can result in unexpectedly high plasma levels of other drugs which are
metabolized by those CYP450 enzymes or are substrates of p-glycoprotein and may lead to toxic effects. Due to the long half-life of amiodarone, interactions may be observed for several months after discontinuation of amiodarone. Reported examples of this interaction include the following:

HMG-CoA Reductase Inhibitors
HMG-CoA reductase inhibitors that are CYP3A4 substrates (including simvastatin and atorvastatin) in combination with amiodarone have been associated with reports of myopathy/rhabdomyolysis.

Immunosuppressives
Oral amiodarone administered in combination with Cyclosporine (CYP3A4 substrate) has been reported to produce persistently elevated plasma concentrations of cyclosporine resulting in elevated creatinine, despite reduction in dose of cyclosporine. Combination of amiodarone with other antiarrhythmic therapy should be reserved for patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent or incompletely responsive to amiodarone. During transfer to amiodarone the dose levels of previously administered agents should be reduced by 30 to 50% several days after the addition of amiodarone, when arrhythmia suppression should be beginning. The continued need for the other antiarrhythmic agent should be reviewed after the effects of amiodarone have been established, and discontinuation ordinarily should be attempted. If the treatment is continued, these patients should be particularly carefully monitored for adverse effects, especially conduction disturbances and exacerbation of tachyarrhythmias, as amiodarone is continued. In amiodarone-treated patients who require additional antiarrhythmic therapy, the initial dose of such agents should be approximately half of the usual recommended dose.

Antihypertensives
Amiodarone should be used with caution in patients receiving β-receptor blocking agents (e.g., propranolol, a CYP3A4 inhibitor) or calcium channel antagonists (e.g., verapamil, a CYP3A4 substrate, and diltiazem, a CYP3A4 inhibitor) because of the possible potentiation of bradycardia, sinus arrest, and AV block; if necessary, amiodarone can continue to be used after insertion of a pacemaker in patients with severe bradycardia or sinus arrest.

Anticoagulants
Potentiation of warfarin-type (CYP2C9 and CYP3A4 substrate) anticoagulant response is almost always seen in patients receiving amiodarone and can result in serious or fatal bleeding. Since the concomitant administration of warfarin with amiodarone increases the prothrombin time by 100% after 3 to 4 days, the dose of the anticoagulant should be reduced by one-third to one-half, and prothrombin times should be monitored closely.

Since amiodarone is a substrate for CYP3A4 and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentrations of amiodarone, with the potential for toxic effects. Reported examples include the following:

Protease Inhibitors
Protease inhibitors are known to inhibit CYP3A4 to varying degrees. Inhibition of CYP3A4 by indinavir has been reported to result in increased serum concentrations of amiodarone.
Monitoring for amiodarone toxicity and serial measurement of amiodarone serum concentration during concomitant protein inhibitor therapy should be considered.

Histamine H1 antagonists
Loratadine, a non-sedating antihistaminic, is metabolized primarily by CYP3A4. QT interval prolongation and torsade de pointes have been reported with the co-administration of loratadine and amiodarone.

Antiviral drugs
Coadministration of amiodarone with sofosbuvir alone or in combination with another HCV direct acting antiviral (such as daclatasvir, simeprevir, or ledipasvir) is not recommended as it may lead to serious symptomatic bradycardia. The mechanism for this bradycardia effect is unknown. If coadministration cannot be avoided, cardiac monitoring is recommended.

Other Drugs
Dextromethorphan is a substrate for both CYP2D6 and CYP3A4. Amiodarone inhibits CYP2D6.

P-glycoprotein substrates: amiodarone is a P-gp inhibitor. Co-administration with P-gp substrates is expected to result in an increase of their exposure.

Some drugs/substances are known to accelerate the metabolism of amiodarone by stimulating the synthesis of CYP3A4 (enzyme induction). This may lead to low amiodarone serum levels and potential decrease in efficacy. Reported examples of this interaction include the following:

Antibiotics
Rifampin is a potent inducer of CYP3A4. Administration of rifampin concomitantly with oral amiodarone has been shown to result in decreases in serum concentrations of amiodarone and desethylamiodarone.

In addition to the interactions noted above, chronic (>2 weeks) oral amiodarone hydrochloride administration impairs metabolism of phenytoin, dextromethorphan, and methotrexate.

Agents which may induce hypokalaemia
Combined therapy with stimulating laxative agents which may cause hypokalaemia thus increasing the risk of torsade de pointes is not recommended. Other types of laxatives should be used.

Drug-Food Interactions
Grapefruit Juice
Grapefruit juice inhibits CYP3A4-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in significant increased plasma levels of amiodarone (C\(_{\text{max}}\) and AUC increased by 84% and 50%, respectively); therefore, grapefruit juice should not be taken during treatment with oral amiodarone. Therefore, this information should be considered when changing from intravenous amiodarone to oral amiodarone.
Drug-Herb Interactions
St. John’s Wort
St. John’s Wort (**Hypericum perforatum**) induces CYP3A4. Since amiodarone is a substrate for CYP3A4, there is the potential that the use of St. John’s Wort in patients receiving amiodarone could result in reduced amiodarone levels.

DOSAGE AND ADMINISTRATION

Dosing Considerations
Oral APO-AMIODARONE (amiodarone HCl)

General Considerations:

Because of the unique pharmacokinetic properties, difficult dosing schedule, and severity of side effects if patients are improperly monitored, APO-AMIODARONE (AMIODARONE HCl) therapy should be initiated in hospital and continued in a monitored environment until adequate control of the arrhythmia has occurred. Patients treated with APO-AMIODARONE should be under the supervision of a cardiologist or a physician with equivalent experience in cardiology who is experienced in the treatment of life-threatening arrhythmias, who is thoroughly familiar with the risk and benefit of APO-AMIODARONE therapy, and who has access to laboratory facilities capable of adequately monitoring effectiveness and side effects of treatment. Dose administration must be individualized, particularly taking into account concomitant antiarrhythmic therapy.

The dosage schedule for APO-AMIODARONE (amiodarone HCl) is still somewhat controversial, probably in part due to its poor absorption, unusually long elimination half-life, and huge volume of distribution. Extensive tissue stores of amiodarone hydrochloride must be established before the effects on the heart of oral dose administration are apparent. Intersubject variability as well as differences in dosage regimens and methods of assessment have made it difficult to precisely define the time of onset of initial and maximal antiarrhythmic effect in an individual patient. In order to ensure that an antiarrhythmic effect will be observed without waiting several months, loading doses are required. A uniform, optimal dosage schedule for administration of APO-AMIODARONE has not been determined. Because of the food effect on the absorption of amiodarone hydrochloride, administration of APO-AMIODARONE should be consistent with regard to meals. (See Pharmacokinetics Section of **“Action and Clinical Pharmacology”**). Amiodarone's antiarrhythmic effect after oral administration may be noted in as early as 3 days (72 hours) but more often takes 1 to 3 weeks.

Because of the slow rate of elimination of amiodarone, its antiarrhythmic effects may persist for weeks or months after its discontinuation, but the time of arrhythmia recurrence is variable and unpredictable. In general, when the drug is resumed after recurrence of the arrhythmia, control is established more rapidly relative to the initial response, possibly because tissue stores were not wholly depleted at the time of recurrence.
The combination of APO-AMIODARONE with other antiarrhythmic therapy should be reserved for patients with life-threatening arrhythmias who are unresponsive to adequate doses of a single agent (see PRECAUTIONS: Drug Interactions).

Recommended Dose and Dosage Adjustment

Adult Dosage:

Ventricular Arrhythmias

Loading Dose: Loading doses of 800 to 1600 mg/day are required for 1 to 3 weeks (occasionally longer) until therapeutic response occurs. (Administration of APO-AMIODARONE in divided doses at meals is suggested for total daily doses of 1000 mg or higher, when gastrointestinal intolerance occurs). If side effects become excessive, the dose should be reduced.

Since grapefruit juice is known to inhibit CYP3A4-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in significant increased plasma levels of amiodarone, grapefruit juice should not be taken during treatment with oral amiodarone (see “WARNINGS AND PRECAUTIONS, Drug Interactions”).

Maintenance Dose: When adequate arrhythmia control has been achieved, or if adverse drug reactions become prominent, the APO-AMIODARONE dose should be reduced to 600 to 800 mg/day for one month and then to the maintenance dose, usually 200 to 400 mg/day (occasionally 600 mg/day). APO-AMIODARONE may be administered as a single daily dose, or in patients with severe gastrointestinal intolerance, as a b.i.d. dose. In each patient, the chronic maintenance dose should be determined according to antiarrhythmic effect as assessed by symptoms, Holter recordings, and/or programmed electrical stimulation, and by patient tolerance. Plasma concentrations may be helpful in evaluating nonresponsiveness or unexpectedly severe toxicity.

The lowest effective dose should be used to prevent the occurrence of adverse drug reactions. In all instances, the physician must be guided by the severity of the individual patient's arrhythmia and response to therapy. When dose adjustments are necessary, the patient should be closely monitored for an extended period of time because of the long and variable half-life of amiodarone and the difficulty in predicting the time required to attain a new steady-state level of drug. Dosage suggestions are summarized below:

<table>
<thead>
<tr>
<th>TABLE 5 - ORAL APO-AMIODARONE DOSAGE FOR VENTRICULAR ARRHYTHMIA SUPPRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading Dose (Daily)</td>
</tr>
<tr>
<td>1-3 weeks</td>
</tr>
<tr>
<td>800-1600 mg</td>
</tr>
</tbody>
</table>

Elderly Patients

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac
function, and of concomitant disease or other drug therapy.

Administration
APO-AMIODARONE may be administered as a single daily dose, or in patients with severe gastrointestinal intolerance, as a b.i.d. dose.

Food increases the rate and extent of absorption of amiodarone. Because of the food effect on the absorption of amiodarone hydrochloride, administration of APO-AMIODARONE should be consistent with regard to meals.

Administration of APO-AMIODARONE in divided doses at meals is suggested for total daily doses of 1000 mg or higher, when gastrointestinal intolerance occurs. If side effects become excessive, the dose should be reduced.

OVERDOSAGE

There have been cases, some fatal, of amiodarone hydrochloride overdose. Overdose may lead to severe bradycardia and to conduction disturbances with the appearance of an idioventricular rhythm, particularly in elderly patients or patients on digitalis therapy.

One report of the acute ingestion of a single 8 g dose of oral amiodarone hydrochloride by a healthy 20-year-old female has been reported. At first assessment, the patient was conscious and profuse perspiration and a slight tachycardia were the only abnormal findings on clinical observation. Slight bradycardia was observed during the second and third day; thereafter, QT interval and heart rate returned to normal. No clinical adverse events were documented over the subsequent 3-month monitoring period.

The acute oral LD₅₀ of amiodarone HCl in mice and rats is greater than 3,000 mg/kg.

Intravenous Amiodarone
There have been cases, some fatal, of amiodarone overdose. Effects of an inadvertent overdose of I.V. amiodarone include hypotension, cardiogenic shock, bradycardia, AV block, and hepatotoxicity. Hypotension and cardiogenic shock should be treated by slowing the infusion rate or with standard therapy: vasopressor drugs, positive inotropic agents and volume expansion. Bradycardia and AV block may require temporary pacing. Hepatic enzyme concentrations should be monitored closely. Neither amiodarone nor DEA is dialyzable.

Overdosage Management
If an overdose should occur, gastric lavage or induced emesis should be employed to reduce absorption, in addition to general supportive measures. The patient's cardiac rhythm and blood pressure should be monitored, and if clinically significant bradycardia ensues, a β-adrenergic agonist or a temporary pacemaker should be used. Hypotension with inadequate tissue perfusion should be treated with positive inotropic and/or vasopressor agents. Neither amiodarone nor its metabolite is dialyzable.

For management of a suspected drug overdose, contact your regional Poison Control Centre.
ACTION AND CLINICAL PHARMACOLOGY

Mechanism of Action
APO-AMIODARONE (amiodarone HCl) is generally considered a class III antiarrhythmic drug, but it possesses electrophysiologic characteristics of all four Vaughan Williams classes. Like Class I drugs, amiodarone blocks sodium channels at rapid pacing frequencies, and like Class II drugs, it exerts antisympathetic activity. One of its main effects, with prolonged administration, is to lengthen the cardiac action potential, a Class III effect. The negative chronotropic effect of amiodarone in nodal tissues is similar to the effect of Class IV drugs. In addition to blocking sodium channels, amiodarone blocks myocardial potassium channels, which contributes to slowing of conduction and prolongation of refractoriness (class III effect). The antisympathetic action and block of calcium and potassium channels are responsible for the negative dromotropic effects on the sinus node and for the slowing of conduction and prolongation of refractoriness in the atrioventricular (AV) node.

Additionally, amiodarone has vasodilatory action that can decrease cardiac workload and consequently myocardial oxygen consumption.

A comparison of the electrophysiologic effects of oral and intravenous (I.V.) amiodarone is shown in Table 6 below.

Table 6 - Effects of Oral and Intravenous Amiodarone on Electrophysiologic Parameters

<table>
<thead>
<tr>
<th>Formulation</th>
<th>SCL</th>
<th>QRS</th>
<th>QTc</th>
<th>AH</th>
<th>HV</th>
<th>ERP RA</th>
<th>ERP RV</th>
<th>ERP AVN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>↑</td>
<td>↔</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Intravenous</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
<td>↑</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
<td>↑</td>
</tr>
</tbody>
</table>

↔ No change
Abbreviations: SCL=sinus cycle length; QRS=a measure of intraventricular conduction; QTc=corrected QT, a measure of repolarization; AH=atrial His, a measure of intranodal conduction; HV=His ventricular, a measure of infranodal conduction; ERP=effective refractory period; RA=right atrium; RV=right ventricle; AVN=atrioventricular node.

At higher doses (>10 mg/kg) of I.V. amiodarone, prolongation of the ERP RV and modest prolongation of the QRS have been seen. These differences between oral and intravenous focused on the AV node, causing an intranodal conduction delay and increased nodal refractoriness due to calcium channel blockade (Class IV activity) and β-adrenoreceptor antagonism (Class II activity).

Pharmacodynamics
Amiodarone has been reported to produce negative inotropic and vasodilating effects in animals and humans. After long-term treatment with oral amiodarone in a dose range of 200 to 600 mg/day, patients with decreased left ventricular ejection fraction (LVEF) show no significant change in mean LVEF. Hypotension is uncommon (<1%) during chronic oral amiodarone therapy. In clinical studies of patients with refractory ventricular fibrillation (VF) or
hemodynamically unstable ventricular tachycardia (VT), drug-related hypotension occurred in 15.6% of 1836 patients treated with I.V. amiodarone. No correlations were seen between the baseline ejection fraction and the occurrence of clinically significant hypotension during infusion of I.V. amiodarone.

Pharmacokinetics
Absorption:
The absorption of oral amiodarone is slow and variable, with peak serum amiodarone concentrations being attained at 3 to 12 hours after administration. Absorption may continue for up to 15 hours after oral ingestion. There is extensive intersubject variation: mean oral bioavailability is approximately 50% (mean range, 33% to 65%). First-pass metabolism in the gut wall and liver appears to be an important factor in determining the systemic availability of the drug. The mean terminal half-life after steady-state administration is approximately 53 days and has been found in one study (n=8) to range from 26 to 107 days. Since at least 3 to 4 half-lives are needed to approach steady-state concentrations, loading doses must be administered at the onset of oral amiodarone therapy. In the absence of a loading-dose period, steady-state plasma concentrations, at constant oral dosing, would therefore be reached between 130 and 535 days, with an average of 265 days. For the metabolite, the mean plasma-elimination half-life was approximately 61 days. These data probably reflect an initial elimination of drug from well-perfused tissue (the 2.5 - to 10 - day half-life phase), followed by a terminal phase representing extremely slow elimination from poorly perfused tissue compartments such as fat.

Food increases the rate and extent of absorption of amiodarone. The effects of food upon the bioavailability of amiodarone have been studied in thirty healthy subjects who received a single 600 mg dose both immediately after consuming a meal and following an overnight fast. The area under the plasma concentration-time curve (AUC) and the peak plasma concentration (C_{max}) of amiodarone increase by as much as 2.4 and 3.8 times, respectively, in the presence of food. Food also increased the rate of absorption, decreasing the time to peak plasma concentration (T_{max}) by 37%.

Distribution:
Amiodarone has a very high apparent volume of distribution (approximately 5000 L) with an extensive accumulation in tissues, especially adipose tissues, and in highly perfused organs such as liver, lung, spleen, heart and kidney. One major metabolite of amiodarone, desethylamiodarone, has been identified, but the pharmacological activity of this metabolite is not known in humans. During chronic treatment, the plasma ratio of metabolite to parent compound approximates 1.

Amiodarone exhibits complex disposition characteristics after intravenous administration. Peak serum concentrations after single 5 mg/kg 15-minute intravenous infusions in healthy subjects range between 5 and 41 mg/L. Peak concentrations after 150 mg supplemental infusions in patients with ventricular fibrillation (VF) or hemodynamically unstable ventricular tachycardia (VT) range between 7 and 26 mg/L. Due to rapid disposition, serum concentrations decline to 10% of peak values within 30 to 45 minutes after the end of the infusion. In clinical trials, after 48 hours of continued infusions (125, 500, or 1000 mg/day) plus supplemental (150 mg) infusions (for recurrent arrhythmias), amiodarone mean serum concentrations between 0.7 to 1.4
mg/L were observed (n = 260).

Metabolism:
Amiodarone is eliminated primarily by hepatic metabolism and biliary excretion. Desethylamiodarone (DEA) is the major active metabolite of amiodarone. At the usual amiodarone daily maintenance dose of 400 mg, mean steady-state DEA/amiodarone ratios ranged from 0.61 to 0.93. High-dose oral amiodarone loading in patients yielded 24-hour DEA/amiodarone ratios of 0.083 to 0.19. High-dose intravenous loading yielded a mean 24-hour DEA/amiodarone ratio of 0.041. No data are presently available on the activity of DEA in humans, but animal studies have shown that it has significant electrophysiologic and antiarrhythmic properties. The major enzyme responsible for the N-deethylation to DEA is believed to be cytochrome P450 3A4. Large interindividual variability in CYP-450 3A4 activity may explain the variable systemic availability of amiodarone. DEA is highly lipophilic and has a very large apparent volume of distribution, showing a higher concentration than amiodarone in all tissue except fat at steady-state. Myocardial concentrations of DEA are approximately 3- to 4.5-fold greater than those of amiodarone during long-term oral amiodarone therapy. However, after either acute oral or acute intravenous administration, both mean serum and mean myocardial DEA concentrations are quite low compared to those of amiodarone.

Excretion:
Amiodarone is eliminated primarily by hepatic metabolism and biliary excretion. There is negligible excretion of amiodarone or DEA in urine. Neither amiodarone nor DEA is dialyzable. Amiodarone and DEA cross the placenta and both appear in breast milk.

Table 7 summarizes the mean ranges of pharmacokinetic parameters of amiodarone reported in single dose I.V. (5 mg/kg over 15 min) and oral (400 or 600 mg) studies of healthy subjects and in in vitro (protein binding) studies. Pharmacokinetics were similar in males and females.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Clearance (ml/h/kg)</th>
<th>V_c (L/kg)</th>
<th>V_SS (L/kg)</th>
<th>t_1/2 (days)</th>
<th>Protein binding</th>
<th>F_oral (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>90-158</td>
<td>0.2</td>
<td>40-84</td>
<td>20-47</td>
<td>> 0.96</td>
<td>33-65</td>
</tr>
<tr>
<td>Desethylamiodarone</td>
<td>197-290</td>
<td>—</td>
<td>68-168</td>
<td>≥ AMI t_1/2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes: V_c and V_SS denote the central and steady-state volumes of distribution from I.V. studies; F_oral is systemic availability of amiodarone. "—" denotes not available. AMI is Amiodarone. t_1/2 = terminal phase elimination half-life. Desethylamiodarone clearance and volume involve an unknown biotransformation factor.

There is no well-established relationship between drug concentration and therapeutic response for long-term oral use. Steady-state amiodarone concentrations of 1 to 2.5 mg/L, however, have been effective with minimal toxicity following chronic oral amiodarone.
Special Populations and Conditions

Pediatrics:
The safety and efficacy of amiodarone in children have not been established; therefore, its use in children is not recommended.

Geriatrics:
Clinical studies of amiodarone tablets did not include sufficient number of subjects aged 65 years and over to determine whether they respond differently from younger subjects.

Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Gender:
No data on dosage adjustment is available for the oral formulation. Based on a single-dose clinical trial with the intravenous formulation, no gender-based dosage adjustment is required. Recommendations regarding gender-based dosage adjustment are based on intravenous data, and may not be representative of the oral formulation.

Hepatic Insufficiency:
No data on dosage adjustment is available for the oral formulation. Based on a single-dose clinical trial with the intravenous formulation, no dosage adjustment is required for patients with hepatic impairment, although these patients should be monitored closely. Recommendations regarding dosage adjustment for patients with hepatic impairment are based on intravenous data, and may not be representative of the oral formulation. (See WARNINGS AND PRECAUTIONS, Hepatic/Biliary/Pancreatic.)

Renal Insufficiency:
No data on dosage adjustment is available for the oral formulation. Based on a single-dose clinical trial with the intravenous formulation, no dosage adjustment is required for patients with renal dysfunction, end-stage renal disease or dialysis. Recommendations regarding dosage adjustment for patients with renal dysfunction, end-stage renal disease or dialysis are based on intravenous data, and may not be representative of the oral formulation.

Genetic Polymorphism:
No data on dosage adjustment available.

Race:
No data on dosage adjustment available.

STORAGE AND STABILITY

Keep bottle tightly closed. Store at controlled room temperature, 15°C to 30°C.
SPECIAL HANDLING INSTRUCTIONS

None.

DOSAGE FORMS, COMPOSITION AND PACKAGING

APO-AMIODARONE 200 MG Tablets: Each pink, flat faced, beveled edge tablet, engraved “AMI” over score “200” on one side, “APO” on the other side contains 200 mg of amiodarone hydrochloride. Available in bottles of 30, 100, 500, and 1000, and blisters of 100.

Composition (per unit):
In addition to the active ingredient, APO-AMIODARONE 200 MG tablets contain the following non-medicinal ingredients: colloidal silicon dioxide, croscarmellose sodium, crospovidone, FD&C Red # 40 Aluminum Lake 38 to 42% and magnesium stearate.
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substance
Proper name: Amiodarone Hydrochloride

Chemical name: (2-butyl-3-benzofuranyl)[4-[2-(diethylamino)ethoxy]-3,5-Diodophenyl]methanone hydrochloride

Molecular formula and Molecular mass: C_{25}H_{29}I_{2}NO_{3}·HCl; 681.78 g/mol

Structural formula:

![Structural formula image]

Physicochemical properties:
Physical Form: White to slightly yellow crystalline powder

Solubility: Water: 0.25 mg/mL @ 25°C
Ethanol (96%): 30 mg/mL @ 25°C
Ethanol (100%): 13 mg/mL @ 25°C
Hexane: 0.0015 mg/mL @ 25°C
Methylene Chloride: 294 mg/mL @ 25°C
Methanol: 114 mg/mL @ 25°C

pKa value: 6.56

Melting Point: 159°C to 163°C

CLINICAL TRIALS
A comparative biostudy, under fasting conditions, was conducted between January 14, 2006 and June 15, 2006, using Apo-Amiodarone Tablets 200 mg, batch #035-10 and Cordarone® Tablets 200 mg, batch #343728. The study consisted of randomized, double-blind, single-dose, 2-way crossover, with wash-out periods of at least 9 weeks. The fasting study consisted of thirty-nine (39) healthy male volunteers.

The results from the bioequivalence study indicates that Apo-Amiodarone tablets are
bioequivalent to Cordarone® tablets. A summary containing comparative bioavailability data is provided in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Amiodarone</th>
<th>Cordarone†</th>
<th>Ratio of Least Squares Means (%)</th>
<th>90% Confidence Interval (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUCₜ₀₋₇₂ (ng•h/mL)</td>
<td>2849.14 3162.6 (50.8)</td>
<td>2913.40 3134.9 (40.2)</td>
<td>97.8</td>
<td>90.3 – 105.9</td>
</tr>
<tr>
<td>AUCₜᵢnf (ng•h/mL)</td>
<td>3149.13 3479.9 (50.1)</td>
<td>3229.08 3486.0 (38.8)</td>
<td>97.5</td>
<td>90.1 – 105.5</td>
</tr>
<tr>
<td>Cₘₐₓ (n/mL)</td>
<td>143.69 158.1 (46.6)</td>
<td>138.55 150.8 (41.9)</td>
<td>103.7</td>
<td>93.7 – 114.8</td>
</tr>
<tr>
<td>Tₘₐₓ # (h)</td>
<td>7.567 (24.6)</td>
<td>7.311 (23.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tₜₕ₏ₜ # (h)</td>
<td>21.43 (12.8)</td>
<td>21.31 (14.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arithmetic means (CV%) only.
† Cordarone is manufactured by Sanofi-Winthrop Industrie for Wyeth Canada, and was purchased in Canada

Intravenous Amiodarone

TABLE 8 – CLINICAL TRIALS SUMMARY

<table>
<thead>
<tr>
<th>Study Drug/Route of Administration</th>
<th>Study Type</th>
<th>Dose</th>
<th>Patients/Indication</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.V. amiodarone</td>
<td>Placebo-controlled</td>
<td>Approximately 1500 mg/day I.V. amiodarone administered using 2- and 3-stage infusion regimens</td>
<td>Patients with supraventricular arrhythmias and 2- to 3- consecutive-beat ventricular arrhythmias</td>
<td>Rapid onset of antiarrhythmic activity. In patients with complex ventricular arrhythmias, amiodarone therapy reduced episodes of VT by 85%.</td>
</tr>
<tr>
<td>I.V. amiodarone</td>
<td>Pharmacokinetic/pharmacodynamic</td>
<td>Approximately 1500 mg/day I.V.</td>
<td>Patients with recurrent,</td>
<td>Rapid onset of antiarrhythmic</td>
</tr>
<tr>
<td>Study Drug/Route of Administration</td>
<td>Study Type</td>
<td>Dose</td>
<td>Patients/Indication</td>
<td>Results</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
<td>------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>study evaluating rapid I.V. loading</td>
<td>amiodarone administered using 2- and 3-stage infusion regimens</td>
<td>refractory VT/VF</td>
<td>activity. In patients with complex ventricular arrhythmias, amiodarone therapy reduced episodes of VT by 85%.</td>
<td></td>
</tr>
<tr>
<td>I.V. amiodarone</td>
<td>Two randomized, parallel, dose-response trials</td>
<td>Approximately 125, 500 (one trial only) or 1000 mg over the first 24 hours; The dose regimen consisted of an initial rapid loading infusion, followed by a slower 6-hour loading infusion, and then an 18-hour maintenance infusion; the maintenance infusion was continued up to hour 48.</td>
<td>Acute effectiveness in suppressing recurrent VF or hemodynamically unstable VT in patients with at least two episodes of VF or hemodynamically unstable VT in the preceding 24 hours</td>
<td>Prospectively defined primary efficacy end point: rate of VT/VF episodes per hour. Median rate was 0.02 episodes per hour in patients receiving the high dose and 0.07 episodes per hour in patients receiving the low dose, or approximately 0.5 versus 1.7 episodes per day (p = 0.07, 2-sided). Significantly fewer supplemental infusions were given to patients in the high-dose group. In one study, the time to first episode of VT/VF was significantly prolonged. Mortality was not affected.</td>
</tr>
</tbody>
</table>

A placebo-controlled study of I.V. amiodarone in patients with supraventricular arrhythmias and 2- to 3-consecutive-beat ventricular arrhythmias, and a pharmacokinetic/pharmacodynamic
study evaluating rapid I.V. loading in patients with recurrent, refractory VT/VF have shown rapid onset of antiarrhythmic activity well before significant blood levels of desethylamiodarone (DEA) were present; approximately 1500 mg/day of I.V. amiodarone were administered using 2- and 3-stage infusion regimens. In the patients with complex ventricular arrhythmias, including sustained and nonsustained VT, amiodarone therapy reduced episodes of VT by 85%.

The acute effectiveness of I.V. amiodarone in suppressing recurrent VF or hemodynamically unstable VT is supported by two randomized, parallel, dose-response studies of approximately 300 patients each. In these studies, patients with at least two episodes of VF or hemodynamically unstable VT in the preceding 24 hours were randomly assigned to receive doses of approximately 125 or 1000 mg over the first 24 hours, an 8-fold difference. In one study, a middle dose of approximately 500 mg was evaluated. The dose regimen consisted of an initial rapid loading infusion, followed by a slower 6-hour loading infusion, and then an 18-hour maintenance infusion. The maintenance infusion was continued up to hour 48. Additional supplemental infusions of 150 mg were given for “breakthrough” VT/VF more frequently to the 125-mg dose group, thereby considerably reducing the planned 8-fold differences in total dose to 1.8- and 2.6-fold, respectively, in the two studies.

The prospectively defined primary efficacy end point was the rate of VT/VF episodes per hour. For both studies, the median rate was 0.02 episodes per hour in patients receiving the high dose and 0.07 episodes per hour in patients receiving the low dose, or approximately 0.5 versus 1.7 episodes per day (p = 0.07, 2-sided, in both studies). In one study, the time to first episode of VT/VF was significantly prolonged (approximately 10 hours in patients receiving the low dose and 14 hours in patients receiving the high dose). In both studies, significantly fewer supplemental infusions were given to patients in the high-dose group. Mortality was not affected in these studies; at the end of double-blind therapy or after 48 hours, all patients were given open access to whatever treatment (including I.V. amiodarone) was deemed necessary.

DETAILED PHARMACOLOGY

In anaesthetized dogs, amiodarone, in two separate single-dose studies of 2.5, 5, and 10 (n=7/dose), and 10 (n=10) and 20 (n=5) mg/kg I.V., caused a decrease in cardiac contractility (maximal at 10 mg/kg), systemic pressure and heart rate, and an increase in left ventricular end-diastolic pressure.

Direct injection of amiodarone (10 to 1000 μg) into the anterior descending branch of the left coronary artery of isolated, blood-perfused, dog ventricular muscle (n=8) electrically-paced at 1.5 to 2.0 Hz, produced dose-dependent decreases of left ventricular dp/dt and developed tension to a maximum decrease of 50%.

In anaesthetized dogs, single intravenous doses of 3, 5, or 10 mg/kg increased coronary blood flow and decreased coronary artery resistance, left ventricular work, heart rate, total peripheral vascular resistance, and myocardial oxygen consumption in a dose-dependent manner.

In anaesthetized dogs, single intravenous doses of amiodarone, 10 mg/kg, reduced heart rate an additional 23% after it had been maximally reduced by intravenous propranolol and atropine.
Under similar conditions, amiodarone reduced an isoprenaline-mediated increase in heart rate. Further combinations of single doses of intravenous amiodarone with intravenous propranolol, with intravenous glucagon and with intraperitoneal reserpine led the investigators to conclude that the observed anti-adrenergic actions of amiodarone were not mediated by competitive blockade of beta-adrenoceptors.

In 19 anaesthetized dogs administered single, rapid, intravenous doses of amiodarone, percutaneously-introduced intracardiac probes measured the monophasic action potentials (MAP) of right atria and ventricles, bundle of His potentials, and atrial and ventricular stimulation. Under the conditions of the experiment, the peak activity of amiodarone was found between the fifth and the tenth minutes. The rate of discharge of the sinus node was lowered by 36%. At the atrial level, the duration of the MAP was increased by 9% and its dv/dt was lowered slightly, the total refractory period was increased by 22%, the effective refractory period was increased by 27%, the functional refractory period was increased by 19%, the ratio of the length of the effective period/duration of the MAP became slightly greater than unity, conduction facilitation disappeared, and the period of slow conduction increased. In the AV node, the AH interval increased by 44% under normal rhythm, while atrial stimulation at 200/ms resulted in conversion to total AV block in more than half of the cases. The potential of the bundle of His and the HV interval were not altered. At the ventricular level, the duration of the monophasic action potential increased by 25%, its dv/dt decreased slightly, the total refractory period increased by 8%, and the effective refractory period increased by 14%.

Amiodarone, 20 mg/kg, given daily for 6 weeks intraperitoneally to rabbits, had no effect on the resting potential or action potential height and only a small effect on the maximum rate of depolarization of isolated rabbit atrial or ventricular muscle fibres as shown by intracellular recording. It caused a considerable prolongation of the action potential in both tissues.

Using a microelectrode technique, the action of amiodarone (1.5 x 10^-5M) on the sinus node activity of spontaneously-beating, isolated right atria of rabbits was discovered to consist of a significant increase of the action potential duration and a decrease of the slope of diastolic depolarization, both effects leading to a reduction in the sinus rate. In in vitro experiments using voltage clamp conditions by means of the double sucrose gap technique in both frog atrial and ferret ventricular fibres, an aqueous solution of amiodarone (2.10^-4 to 2.10^-5M) decreased outward K+-mediated currents and decreased reactivation of inward currents.

In an experiment involving the simultaneous daily administration by intraperitoneal injection to live rabbits (n=5) for a period of 3 weeks (beginning at week 4) of 5 µg of thyroxine (assumed normal daily thyroxine requirement for these rabbits: approximately 7 µg/day) and 20 mg/kg of amiodarone (for a period of 6 weeks), the prolongation by amiodarone of the action potential of isolated rabbit atria and ventricular strips was prevented. Treatment of similar rabbits (n=5) with 10 mg/kg of potassium iodine (equivalent to the iodine content of 20 mg/kg of amiodarone) given daily, intraperitoneally, for 6 weeks had no effect upon cardiac action potential duration. It was concluded by the investigators conducting the rabbit tissue experiments that amiodarone had effects on cardiac action potentials similar to those which occur after thyroidectomy.
Amiodarone has been shown to exhibit antiarrhythmic activity in several experimental animal models. At a single intravenous dose of 5 mg/kg, amiodarone suppressed multifocal ventricular ectopic beats induced by the intravenous injection of epinephrine in an anaesthetized dog: at 10 to 15 mg/kg, intravenous amiodarone suppressed polymorphic ventricular systoles provoked by the intravenous injection of barium chloride in anaesthetized rabbits (n=2) and dogs (n=2). At 10 mg/kg, intravenous amiodarone suppressed ventricular extrasystoles induced by ligature of the anterior descending coronary artery in an anaesthetized dog. At 10 to 20 mg/kg, intravenous amiodarone suppressed atrial fibrillation induced by acetylcholine in anaesthetized dogs (n=2). At 10 mg/kg, intravenous amiodarone suppressed the ventricular tachycardia induced by aconitine in an anaesthetized dog and the ventricular tachycardia induced by strophanthin in morphinized dogs (n=16).

In the isolated hearts of rats pretreated intravenously with single doses (21 to 42 µmol/kg: 3.5 to 7.5 mg), amiodarone prevented (in a dose-related fashion) both ventricular tachycardia and ventricular fibrillation during regional myocardial ischemia and during reperfusion of ischemic muscle.

In anaesthetized guinea pigs (n=10/group) amiodarone administered intravenously at single doses of 25 and 50 mg/kg statistically significantly protected against ouabain-induced ventricular flutter-fibrillation although it did not provide significant protection against cardiac arrest.

TOXICOLOGY

Acute Toxicity
Amiodarone HCl was evaluated in acute oral studies in mice, rats, and dogs, and in acute intravenous studies in rats and dogs. Multiple-dose toxicity studies were performed by oral administration to mice (20 months), rats (3 to 104 weeks), dogs (4 weeks to 9 months), and pigs (3 or 10 months). Amiodarone was administered intravenously in multiple-dose toxicity studies to rabbits (6 weeks), dogs (4 weeks), and baboons (4 weeks).

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day/ Duration)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse / NMRI</td>
<td>Oral (gavage)</td>
<td>500 to 3000/Single dose</td>
<td>The oral LD$_{50}$ was greater than 3000 mg/kg. For technical reasons (high viscosity of the solutions at concentrations greater than 10%), the highest dose that could be administered was 3000 mg/kg.</td>
</tr>
<tr>
<td>Rat/Wistar</td>
<td>Oral (gavage)</td>
<td>500, 750, 1000, 2000, 3000/Single dose</td>
<td>The oral LD$_{50}$ was greater than 3000 mg/kg. No deaths occurred at the highest dosage.</td>
</tr>
<tr>
<td>Dog*</td>
<td>Oral (diet)</td>
<td>0, 1000, 3000, or 5000 in feed</td>
<td>The oral LD$_{50}$ was greater than 5000 mg/kg. No deaths occurred. All dogs vomited within 6 hours of ingestion. One dog given 5000 mg/kg demonstrated tremors 24 hours after ingesting the drug. This lasted for more than 96 hours and was accompanied by hindquarter paralysis.</td>
</tr>
</tbody>
</table>

* Report does not identify strain
TABLE 10 - INTRAVENOUS AMIODARONE: ACUTE TOXICITY STUDIES

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day / Duration)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat/Wistar</td>
<td>I.V.</td>
<td>100, 150, 200 / Single dose</td>
<td>The I.V. LD$_{50}$ was 135 mg/kg. Dyspnea, resulting in cyanosis, was observed premortem.</td>
</tr>
<tr>
<td>Rat/Wistar</td>
<td>I.V.</td>
<td>100, 120, 140, 160, 180, 200 / Single dose</td>
<td>The I.V. LD$_{50}$ was 150 mg/kg.</td>
</tr>
<tr>
<td>Rat/SD (BR)</td>
<td>I.V.</td>
<td>Males 0, 100, 120, 150, 160, 180, Females 0, 160, 170, 180, 220 / Single dose</td>
<td>The I.V. LD$_{50}$ for males and females was 170 and 175 mg/kg, respectively. Clonic convulsions were observed at dosages of 120 mg/kg and above.</td>
</tr>
<tr>
<td>Dog/Beagle</td>
<td>I.V.</td>
<td>5 minute injections of 25-150, 5 minute injections of 75-100, 20 minute injections of 100-150 / Single dose</td>
<td>The I.V. LD${50}$ for a 5 minute infusion was 75 to 100 mg/kg. The LD${50}$ for a 20 minute infusion was 150 mg/kg. Injections were followed by excitation with redness of the skin and mucous membranes, sedation, dyspnea, convulsions, and electrocardiographic alterations.</td>
</tr>
<tr>
<td>Dog*</td>
<td>I.V.</td>
<td>0.75 mg/kg/min to 110 or 95 mg/kg 0.62 mg/kg/min to 124 mg/kg 0.45 mg/kg/min to 190 mg/kg /Single dose</td>
<td>The I.V. LD$_{50}$ was 110 to 125 mg/kg for an infusion rate of 0.6 to 0.75 mg/kg per min and was >90 mg/kg for an infusion rate of 0.45 mg/kg per min.</td>
</tr>
</tbody>
</table>

* Report does not identify sex or strain of dogs.

Long Term Toxicity/Carcinogenicity

TABLE 11 - INTRAVENOUS AMIODARONE: SUBCHRONIC TOXICITY STUDIES

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit / Dutch</td>
<td>I.V.</td>
<td>0, 5, 10 and 25 / 6 weeks</td>
<td>No drug-related mortality occurred. There was a statistically significant decrease in red blood cell count and hemoglobin values for both males and females at all dose levels. Significant increases in total cholesterol (143% to 200%) were observed at all dose levels. Total lipids were also significantly increased (168%) in males at 25 mg/kg. For females, total lipids were significantly increased at 5 (127%) and 10 (147%) mg/kg, but not at 25 mg/kg. All other blood chemistry parameters showed no difference between treated and control animals. At necropsy, several treated animals exhibited white patches and/or signs of cirrhosis in the liver. Microscopic evaluation revealed hepatocytes and Kupffer cells containing numerous pigments (probably hemosiderines) in several control and treated rabbits. In several treated animals (2, 2 and 1 rabbits at 5, 10 and 25 mg/kg, respectively), part of the hepatic parenchyma degenerated and was replaced by necrotic tissue surrounded by fibrous tissue, giving a cirrhotic appearance. However, these histologic changes were not considered related to drug administration. As a result of the hemotological and biochemical changes, a no toxicologic effect level (NTEL) could not be determined.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog / Beagle</td>
<td>I.V.</td>
<td>0, 7.5, 15, 30 and 60/4 weeks</td>
<td>Mortality was observed at 60 mg/kg. Adverse physical examination findings were observed in all groups; however, only sedation occurred solely in drug-treated groups at dosages of 30 mg/kg and above. Body weight and food consumption were decreased at 30 and 60 mg/kg. Hematologic (increased fibrinogen and monocyte levels; decreased red blood cell count, hematocrit, and hemoglobin levels), biochemical (increased cholesterol [122% to 216%], triglycerides, alanine aminotransferase, alkaline phosphatase, potassium, and T<sub>4</sub>; and decreased protein and T<sub>3</sub>/T<sub>4</sub> ratio) changes occurred at all dosage levels, although most frequently at dosages of 30 mg/kg and above. Alterations in cardiac parameters (decreased heart rate, lengthened PR and ST segments, increased T wave amplitude) occurred at 60 mg/kg. Liver weights were increased in all drug-treated groups while adrenal and prostate weights were decreased at 60 mg/kg. Macroscopic changes to the liver, bile, colonic mucosa, and renal cortex occurred in all drug-treated groups. Many of the drug-treated dogs exhibited clots and outgrowths of the valvula tricuspidalis and pulmonary lesions (congestion, crepitation, foamy discharge at sectioning) were observed in the 3 animals that died during the study. Injection site lesions were observed in all groups, including controls. However, the severity in the drug-treated groups followed a dose-response pattern. Microscopic examination revealed foamy macrophages in the lymph nodes, spleen and Peyer’s patches at 60 mg/kg and in 1 dog that received 30 mg/kg. Dogs at all dose levels showed islets of clear cells in the adrenal cortex. Marked cholestasis and thymic regression were observed at 60 mg/kg; evidence of increased thyroid activity was observed in all treated animals. As a result of the observed effects, a NTEL could not be determined.</td>
</tr>
<tr>
<td>Baboon/ Papio papio</td>
<td>I.V.</td>
<td>0, 12.5, 25 and 50/4 weeks</td>
<td>One 12.5 mg/kg female and all four 50 mg/kg animals died or were killed in extremis. A dosage of 50 mg/kg produced gradual changes in the general condition of the animals (prostration, piloerection) from week 2 onward. Decreased food consumption in all drug-treated groups were associated with body weight loss in the 25 and 50 mg/kg groups. Decreased heart rates (lengthening of the ST segment) were noted in the 25 and 50 mg/kg dosage groups. Changes in hematologic (decreased red blood cell count, hemoglobin, hematocrit, mean cell hemoglobin, and mean cell hemoglobin concentrations; increased reticulocytes, neutrophils and monocytes) and biochemical (increased bilirubin, triglycerides, BUN, creatinine, and T<sub>4</sub> levels) parameters were observed in all drug-treated groups; the majority of effects were observed at 25 and 50 mg/kg. Organ weight changes included a thyroid weight increase at all dose levels. Increased liver and kidney weights occurred at the higher dosage levels and a dose-related thymus weight decrease occurred. Discoloured livers and a cirrhotic appearance was observed in all 4 baboons at 50 mg/kg. All 3 of the animals that died during the study exhibited cardiac lesions, 2 of which had a clot adherent to the endocardium and valvulae in the right side of the heart, while the</td>
</tr>
</tbody>
</table>
third showed discolouration of the myocardium and necrotic magma in the muscle. These changes were probably attributable to the irritative properties of amiodarone HCl when the compound is repeatedly administered into the cephalic or saphenous veins.

Intravenous treatment with amiodarone HCl caused indurations, edema, abscesses and local necrosis with eschars at the injection sites; the degree of these lesions was dose related. The vehicle alone induced only local indurations that partially regressed when the injection site was changed. Microscopic examination revealed a dose-related increase in incidence and degree of thymic regression at all dose levels, changes in the gall bladder at the higher doses, and colloid retention in the thyroids in all treated groups. As a result of the observed mortality, effects on the thyroid, and injection site lesions, a NTEL could not be determined.

I.V. = Intravenous administration

TABLE 12 - ORAL AMIODARONE: CHRONIC TOXICITY STUDIES

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat / Wistar</td>
<td>Oral (gavage)</td>
<td>100, 200, 300, 450, or 600/3 weeks*</td>
<td>The LD_{50} was 420 mg/kg.</td>
</tr>
<tr>
<td>Rat / Wistar</td>
<td>Oral (gavage)</td>
<td>0, 100, 200, 300, 450 or 600/for 3 weeks*</td>
<td>The LD_{50} was greater than 600 mg/kg. A dose related decrease in mean body weights of both males and females occurred.</td>
</tr>
</tbody>
</table>
| Rat / Crl BR | Oral (gavage) | 10, 19, 37.5, 75, or 150/4 weeks | Drug treatment at 37.5 mg/kg or less did not produce any adverse reactions. At doses of 75 or 150 mg/kg, there was a deterioration in animals' health. Increased mortality occurred at 150 mg/kg. Postmortem examinations showed that those animals that died on test were cachectic. Body weight gains were decreased in both sexes at 150 mg/kg and in females at 75 mg/kg; food intake was also reduced. Although there were no clinically significant changes in blood pressure among treated animals, heart rate changes did occur at dosages of 37.5 mg/kg and above. Significant increases in the number of neutrophils and a decrease in the number of lymphocytes were observed in the high-dose treatment group. Clinical chemistry values for blood urea nitrogen (BUN), alkaline phosphatase, and total and esterified cholesterol (dose-related in males) were elevated at 75 mg/kg and above. There was an increase in T_4 and a decrease in the T_3/T_4 ratio at 75 mg/kg and 150 mg/kg. At 75 and 150 mg/kg, there was an increase in lung and adrenal weights, and a decrease in thymus, prostate, seminal vesicle, uterine and ovarian weights. At 37.5 mg/kg and higher, the relative weight of the liver in females appeared slightly increased. Macroscopically, the only observation associated with the drug was a yellow colouring of mesenteric lymph nodes in most animals treated at 75 and 150 mg/kg. Histologically, this proved to be a dose-dependent accumulation of foamy macrophages involving the mesenteric lymph nodes with spreading to the liver, spleen and lungs. The adrenal cortex contained lipid-like material. There was a moderate increases in lung and adrenal weights, and a decrease in thymus, prostate, seminal vesicle, uterine and ovarian weights. At 37.5 mg/kg and higher, the relative weight of the liver in females appeared slightly increased. Macroscopically, the only observation associated with the drug was a yellow colouring of mesenteric lymph nodes in most animals treated at 75 and 150 mg/kg. Histologically, this proved to be a dose-dependent accumulation of foamy macrophages involving the mesenteric lymph nodes with spreading to the liver, spleen and lungs. The adrenal cortex contained lipid-like material. There was a moderate
degree of thymic involution observed in high-dose animals and this was possibly associated with stress at this level. The thyroids of treated animals presented a histologic appearance of increased activity.

* Animals were dosed 5 days/week

TABLE 12 - ORAL AMIODARONE: CHRONIC TOXICITY STUDIES (Continued)

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat / Fisher 344</td>
<td>Oral (gavage)</td>
<td>Vehicle-control, 160/7 days*</td>
<td>Treated animals showed signs of toxicity by the fourth day of dosing. This included weakness accompanied by piloerection, epistaxis and softening of the feces. Reversibility of these symptoms did not occur until 8 days after treatment had stopped and often persisted to the 20th day. One death was recorded on day 7 of administration. Initially, body weight gains were depressed in all groups but returned to normal by the end of the treatment schedule. Increases in the weights of the liver and adrenals were also observed, but these too returned to control values 1 to 2 weeks after dosing had stopped. A marked decrease in thymus weight was partially reversible after 2 weeks and completely reversible by 8 weeks. Macroscopic examination revealed a white coloration of the mesenteric lymph nodes in animals sacrificed on days 7 and 14. Histologically, foam cells were present in the mesenteric lymph nodes and lungs. These changes disappeared after a recovery period of about 2 weeks.</td>
</tr>
<tr>
<td>Rat / Wistar</td>
<td>Oral (gavage)</td>
<td>Vehicle-control, 100, 200, or 300/3 months*</td>
<td>Dose-related increases in mortality were observed (0 at 100 mg/kg, 15% at 200 mg/kg and 25% at 300 mg/kg). Body weights of male rats receiving 200 or 300 mg/kg were depressed 19% and 30%, respectively. Female body weights at 300 mg/kg were depressed by 14% relative to controls. Hemoglobin values slightly depressed at 200 mg/kg and markedly decreased at 300 mg/kg. At 300 mg/kg, the ratio of circulating lymphocytes to polymorphonuclear leukocytes increased during the study; this was more marked in females. Blood urea nitrogen (BUN) was significantly increased in both the 200 and 300 mg/kg groups. Blood glucose levels were not affected by the administration of the drug. At 100 mg/kg, no microscopic lesions were noted except for some hypertrophy of the thyroid gland. With both the 200 and 300 mg/kg, there was centrilobular congestion in the liver which was more marked at the high dose level. In 2 of 14 rats given 300 mg/kg, lesions of the myocardium were present.</td>
</tr>
<tr>
<td>Dog / Beagle</td>
<td>Oral (capsule)</td>
<td>Vehicle control, 100, 200, or 300/3</td>
<td>A 38% decrease in mean body weight was observed in treated animals and this was associated with decreased food intake. One</td>
</tr>
<tr>
<td>Species / Strain</td>
<td>Mode of Administration</td>
<td>Dosage (mg/kg per day)/Duration</td>
<td>Results</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Dog / Beagle</td>
<td>Oral (diet at 0 and 30 mg/kg, capsule at 150 mg/kg)</td>
<td>Dietary control, 30 or 150/ 3 months*</td>
<td>There were no deaths. At 150 mg/kg, gastrointestinal intolerance (vomiting, diarrhea and anorexia) was observed for the first 1½ months and intermittently thereafter. Excessive salivation was noted throughout. Concurrent with the epigastric distress, dogs receiving 150 mg/kg showed a 20% loss in weight during the first 40 days of dosing. Thereafter weight gains were normal. Apart from minor changes in several hematology values, parameters were similar between control and treated groups. A dose-related increase in leukocyte counts was noted at all 3 sampling intervals and decreases on neutrophils during the last month in the high-dose group. Clinical chemistry values were also similar between control and treated animals. SGPT levels rose in animals receiving 150 mg/kg/day during the first month of testing but were normal thereafter. Alkaline phosphatase levels in the high-dose group rose during the study but remained within the normal range for this species. The results of the postmortem macroscopic examination were unremarkable. One dog in the high-dose group exhibited hypertrophy of the thyroid but histopathology was unremarkable. No generalized histopathologic abnormalities were found which were related to drug administration. All findings were slight and occurred either in or were isolated instances or were present in both treated and control animals and could not be attributed to the drug.</td>
</tr>
</tbody>
</table>

* Animals were dosed 5 days/week

** TABLE 12 - ORAL AMIODARONE: CHRONIC TOXICITY STUDIES (Continued) **

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog**</td>
<td>Oral (diet)</td>
<td>Dietary control, 30</td>
<td>One control animal died during the first month of the study and was</td>
</tr>
</tbody>
</table>

* Animals were dosed 5 days/week
replaced. There were no abnormal clinical observations or evidence of gastric intolerance in animals receiving amiodarone. Body weights and food intake were unaffected. The only significant laboratory abnormality was a dose-dependent hypercholesteremia. Macroscopic and histological examinations revealed only incidental lesions probably secondary to intercurrent diseases. Organ weights were not markedly different between treated and control animals.

** Report does not identify strain.

** TABLE 12 - ORAL AMIODARONE: CHRONIC TOXICITY STUDIES (Continued)**

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig*</td>
<td>Oral (diet)</td>
<td>Dietary control, 10, 20, 50, or 150/3 months</td>
<td>At 150 mg/kg, clinical signs of toxicity included ataxia, hypotonia and no weight gain; appetite was not affected. At 1½ months, 2 high-dose animals died during blood collecting. An autopsy revealed only gastritis and gastric ulceration. At 2½ months, the remaining 2 high-dose pigs were sacrificed in extremis. Autopsy findings were unremarkable. No other mortalities were recorded. Animals in the other treated groups showed no signs of toxicity and weight gains paralleled those of the controls. High-dose animals did not undergo blood tests due to the deaths of 2 animals at the first blood sampling and due to the poor health of the remaining 2 animals. In all other animals, results were within normal limits. Both the treated and control values for a number of the clinical tests were similar between groups. Apart from the gastritis and ulcers noted in animals given 150 mg/kg, no other macroscopic lesions were attributed to drug intake. One control animal also displayed gastritis. Histologically, doses of 10, 20, or 50 mg/kg produced no toxic effects on any organs examined. At the 150 mg/kg dose, there were liver lesions and endocrine (pituitary, thyroid, adrenal) dysfunction in pigs treated for 2½ months. In the liver, this was characterized by a disorganization of the hepatic parenchyma, focal necrosis, sclerosed Kiernan's spaces, and brown pigmented macrophages in the interstitial spaces. In the endocrine system, the adrenal cortex showed clusters of lymphomonocytes and hemorrhagic foci principally in the zona fasciculate. In both the zona glomerulosa and zona fasciculata of the adrenal cortex, there was evidence of hyperfunction. In the thyroid, numerous follicle cells that were larger than normal with vacuolar cytoplasm were suggestive of increased activity. In the pituitary of 1 pig in the 150 mg/kg group, the basophilic cells were more numerous and larger than normal.</td>
</tr>
<tr>
<td>Pig*</td>
<td>Oral (diet)</td>
<td>Dietary control, 50/10 months</td>
<td>There were no deaths, abnormal behaviour, or clinical signs of toxicity. Increase in body weight was parallel for treated and control animals. No abnormalities were noted for hematology, clinical chemistry, ophthalmic, or macroscopic examinations.</td>
</tr>
</tbody>
</table>

* Animals were dosed 5 days/week
<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse / BGC3F1</td>
<td>Oral (gavage)</td>
<td>0, 5, 16, 50/20 months.</td>
<td>No drug-related effects on mortality occurred. Adverse clinical observations mainly consisted of urogenital trauma, resulting from fighting between male cage mates, and palpable masses. The palpable masses were primarily related to the presence of neoplasms. Weight gain and food intake were slightly increased in treated males during the first months of the study only; the effect was not dose related. A dose-related increase in the thyroid weight in both sexes was observed. Macroscopically, thyroid hypertrophy was observed. Histopathologically, a dose-related increase in incidence and degree of hyperplasia was seen in the thyroids of animals from test groups. However, the only tumors of the thyroid were diagnosed as follicular adenomas. These occurred in 1 control animal and in 4 high-dose animals and were within the normal range for this species at this age. No other non-neoplastic or neoplastic change associated with treatment was observed. The remainder of tumors diagnosed were recognized as those that occur commonly in mice. There was no increase in incidence or change in biological type of these tumors in treated animals when compared to controls. In addition, examination of blood smears taken at autopsy showed no treatment-related effect.</td>
</tr>
<tr>
<td>Rat / Sprague-Dawley CD</td>
<td>Oral (gavage)</td>
<td>0, 5, 16, 50/104 weeks</td>
<td>No effect on mortality occurred. Drug treatment at 16 and 50 mg/kg per day to males and females induced minor effects including salivation immediately after dosing, staining of the fur/reduced grooming, paddling of the forefeet, reduced food consumption, reduced body weight gain, decreased erythroid values, and increased alkaline phosphatase activity and cholesterol levels. Liver weight was marginally increased in males treated at 50 mg/kg per day. At terminal examination, an increased incidence of pale foci in the lungs of all treated male groups and females given 16 or 50 mg/kg per day, an increased incidence of thyroid enlargement in all treated male groups, increased incidence of liver masses in males given 50 mg/kg per day, and a slightly higher incidence of pancreatic masses in treated male groups were observed. Liver weight was marginally higher in males given 50 mg/kg per day, and thyroid weight was markedly higher in males given 50 mg/kg per day. An increased incidence of neoplastic changes to the thyroid (follicular tumors) occurred in all treated groups. These changes were statistically significant overall for all male groups, but only at 16 mg/kg per day and above in the females. Non-neoplastic findings included changes to the thyroid at all dosages, and lung lesions in all treated male groups and in females given 16 or 50 mg/kg per day. Lymph node changes occurred in males and females given 16 or 50 mg/kg per day, and systemic and thymic lesions occurred in males given 50 mg/kg per day.</td>
</tr>
</tbody>
</table>
TABLE 14 - ORAL AMIODARONE: CHRONIC TOXICITY STUDIES

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog / Beagle</td>
<td>Oral (gavage)</td>
<td>0, 12.5, 25, 50, 100/12 months, plus a 3 month recovery period</td>
<td>Mortality and adverse clinical signs (equilibrium and locomotion disorders, vomiting, diarrhea, tremors) occurred at 25 mg/kg per day and above. Electrocardiograms were altered at 50 and 100 mg/kg per day. Dyslipidosis, characterized by the presence of foam cells was observed at 25 mg/kg per day and above in the lymph nodes and lungs. In the lung, these lesions appeared to be totally reversible after 3 months without treatment at 25 mg/kg per day. The dyslipidosis could be related to the increases in total and esterified cholesterol (without any modification of the ratio), together with a moderate but inconsistent increase in triglycerides and phospholipids. A malabsorption syndrome occurred in some animals treated at 100 mg/kg per day. This syndrome was characterized by diarrhea, vomiting, anorexia, weight loss, and partial or subtotal jejunal villi atrophy accompanied by the presence of foam cells observed histologically. Changes in thyroid function were characterized by an increase in T_4 at dose levels of 12.5 mg/kg per day and above, without any variation in T_3 levels or the thyroid weight. There were no pathological changes in this organ attributed to drug treatment. The increase in T_4 was reversible by the end of the recovery phase. Minor adverse effects such as cholestasis and nonspecific changes such as regression or disappearance of the thymus, amyotrophy, and altered spermatogenesis in males were also recorded at dosage levels of 50 and 100 mg/kg per day.</td>
</tr>
</tbody>
</table>

Reproductive Toxicity
Reproductive toxicology studies were performed by both oral and intravenous administration. Amiodarone was administered by oral gavage to mice, rats, and rabbits, and intravenously to rats (continuous infusion) and rabbits (bolus injection). In addition, the mutagenic potential was assessed in studies supporting the oral formulation.

TABLE 15 - ORAL AMIODARONE: REPRODUCTIVE STUDIES

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse / NMRI</td>
<td>Oral (gavage)</td>
<td>0 (water control), 5, 50 or 100/ Gestation days 1 to 15.</td>
<td>Drug treatment did not result in any fetal malformations in the mouse. However, there was a clear drug-related reduction in litter size due to an increase in the number of resorptions. It was concluded from this study that amiodarone was embryotoxic to mice. Since signs of maternal toxicity were not recorded in this study, no statement can be made about an association between maternal and fetal toxicity.</td>
</tr>
<tr>
<td>Mouse / Charles River</td>
<td>Oral (gavage)</td>
<td>0 (vehicle control), 5, 50, or 100 / Gestation days 1 to 16; 50 mg/kg in an additional group / Gestation days 6 to 16.</td>
<td>Drug treatment (50 mg/kg) administered from days 6 to 16 gestation did not appear to be toxic to the fetus. In doses of 5, 50 and 100 mg/kg administered from days 1 to 16 gestation, the drug did not reduce the number of implantations or cause fetal malformations. The study demonstrated no teratogenicity in mice.</td>
</tr>
<tr>
<td>Species / Strain</td>
<td>Mode of Administration</td>
<td>Dosage (mg/kg per day)/Duration</td>
<td>Results</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rat / OFA /Sprague-Dawley</td>
<td>Oral (gavage)</td>
<td>Vehicle control, 10, 30, 60, or 90/Males - 64 days prior to mating and throughout the mating period. Females - 64 days prior to mating, throughout the mating period, gestation, and until termination on day 21 postpartum.</td>
<td>There were no effects on F₀ survival, clinical observations, or postpartum observations. Body weight gain of females given 60 mg/kg was slightly decreased beginning at week 8, and that of females given 90 mg/kg was decreased throughout the mating and gestation periods. This depression may have resulted from the significantly reduced litter weights and sizes of these groups. Body weight gain of males was marginally reduced only at the highest dose. Food consumption was similar in all groups. There was no effect on estrus cyclicity and pre-coital interval. However, the fecundity index was significantly depressed in the 90 mg/kg group. Drug treatment had no adverse effect on parturition, although 1 female in the 60 mg/kg group died suddenly after delivering 9 live fetuses. During the lactation period, the mean body weight gain of the females was significantly depressed in the highest dose group for the first 10 days; other groups gained weight normally. There were no observed drug-related abnormalities among the offspring. Postnatal viability was reduced in the 90 mg/kg group. Growth and functional development of offspring were similar in all groups, except in the 90 mg/kg group where body weight gain of offspring was markedly depressed from day 1 to day 10 postpartum but not thereafter. Terminal necropsy of adults and of offspring which were not selected for continuation of the study did not reveal any treatment-related abnormalities. The functional development of the special senses (hearing and vision) and reflexes of the offspring was comparable in all treated and control groups as was the body weight gain from 40 days postpartum onwards and of estrus cycles from day 80 to day 100 postpartum.</td>
</tr>
<tr>
<td>Rat / Wistar</td>
<td>Oral (gavage)</td>
<td>Water control and 200/ Gestation day 1 to 21</td>
<td>Drug-treated females demonstrated adverse physical examination findings (listless, shaggy, and dull fur) and reduced weight gain. Conjunctivitis and a nasal suppuration mixed with blood were observed in several of the treated rats. Six (6) of the 30 treated rats died during the study. These animals were observed to have macerations of the abdominal viscera and severe enteritis. Excluding deaths, the percentage of successful matings was comparable in the treated and control groups. Drug treatment (200 mg/kg) was associated with embryotoxicity. The number of resorptions expressed as a percentage of pregnancies or as a percentage of implantations was significantly increased in the treated group as compared to controls. The percentage of females presenting fetuses with major deformities as well as the percentage of fetuses with major deformities was increased in the treated group. Given the limited number of viable litters from the treated rats, however, no conclusions regarding teratogenicity can be drawn. The mean weight of fetuses from the treated group was also slightly less than the control group.</td>
</tr>
<tr>
<td>Rat / Sprague-</td>
<td>Oral (gavage)</td>
<td>0 (water control), 10, 30, or</td>
<td>Prior to mating, treated animals showed no changes in behaviour, food consumption, or estrus cyclicity. Mean body weight gain was</td>
</tr>
<tr>
<td>Species / Strain</td>
<td>Mode of Administration</td>
<td>Dosage (mg/kg per day)/Duration</td>
<td>Results</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Dawley</td>
<td>Oral (gavage)</td>
<td>90/64 days pre-mating, during mating and from gestation day 1 to 19 (females only)</td>
<td>slightly depressed in females receiving 90 mg/kg. Although seven deaths occurred during the pre-mating period, none were considered related to amiodarone treatment. The mating period tended to be shorter in the treated groups than controls, though not significantly shorter. There was a significant increase in the number of barren matings in the 90 mg/kg group. The decrease in number of corpora lutea and implantation sites among dams of the highest dose treatment group may partially explain the reduced fertility rate. Because total litter loss due to resorption occurred in 1 or 2 of the dams from each treatment group and none occurred in the control group, the percentage of resorbed fetuses was higher in the treated groups than in the control group. Discounting these total litter losses, no significant increase in fetal resorptions occurred in any of the treated groups. No teratogenicity was observed. The number of fetuses which presented minor abnormalities (most commonly incomplete skeletal ossification) was significantly greater in the treated groups compared to controls. However, these minor abnormalities resulted primarily from fetal growth retardation, which is a reversible phenomenon, and are not indicative of a true teratogenic event. Thus, it was concluded that amiodarone was without teratogenic potential in rats.</td>
</tr>
<tr>
<td>Rat / Sprague-Dawley</td>
<td>Oral (gavage)</td>
<td>0 (vehicle control), 10, 30, or 90/Gestation day 14 to Postpartum day 21</td>
<td>There were no clinical signs of toxicity and no rats died. A decrease in mean maternal weight gain was observed beginning on gestation day 16 in the 90 mg/kg treatment group. No differences in weight gain were seen during lactation. The duration of gestation was unchanged and parturition was unaffected by amiodarone treatment. The mean live litter size and sex ratio were comparable in treated and control groups. The mean fetal weights were significantly reduced (18% smaller than control) only at 90 mg/kg. This difference was increased on days 4 and 10 of neonatal life (-29% and -31%, respectively), but remained stable thereafter. Although the number of young born to treated females of this group was the same as in the control group, neonatal mortality was higher. Of those terminal offspring, one-third died between birth and day 4, and the remaining two-thirds died between day 5 and weaning. Necropsy revealed no abnormalities related to drug intake in any of the offspring sacrificed on day 21. One offspring from the 10 mg/kg group exhibited agenesis of the right hind limb and a short tail.</td>
</tr>
<tr>
<td>Rat / Sprague-Dawley</td>
<td>Oral (gavage)</td>
<td>0 (water control), 5, 50, or 100/Gestation days 1 to 15</td>
<td>Drug treatment did not have any toxic effect on fetuses of rats at administered doses up to 100 mg/kg. The ratio of the number of living fetuses counted at term to the number of implantation sites was not significantly different in treated and untreated groups. None of the fetuses examined showed any external malformations, microscopic or skeletal abnormalities.</td>
</tr>
<tr>
<td>Rabbit / Belgian Hare</td>
<td>Oral (gavage)</td>
<td>0 (water control), 5, 50 or 100/Gestation days 1 to 18</td>
<td>Neither the number of implantations or live fetuses observed at sacrifice appeared to vary among treated and control groups. The number of resorptions was higher than control in the low and mid-dose treatment groups, but was lower in the high-dose group. Drug</td>
</tr>
</tbody>
</table>
treatment did not affect the fecundity of the animals. Examination of the fetuses revealed no malformations.

TABLE 16 - MUTAGENICITY STUDIES

<table>
<thead>
<tr>
<th>Study</th>
<th>Test System</th>
<th>Concentrations</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ames Test</td>
<td>S. typhimurium Tester Strains</td>
<td>Not identified</td>
<td>No evidence of mutagenicity occurred in the presence or absence of S-9.</td>
</tr>
<tr>
<td></td>
<td>TA98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA1535</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA1537</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA1538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysogenic Induction Test</td>
<td>Bacterial Strains</td>
<td>Not identified</td>
<td>At concentrations that approached toxic levels (~100 micrograms/dish), no increase in spontaneous lysis occurred.</td>
</tr>
<tr>
<td></td>
<td>GY5027</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GY4015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micronucleus Test</td>
<td>Mouse/Charles River</td>
<td>50, 100, 225 mg/kg (each animal received 2 intraperitoneal injections administered over a 24 hour period).</td>
<td>No increase in the number of micronuclei per 200 polychromatic erythrocytes was induced by drug treatment.</td>
</tr>
</tbody>
</table>

TABLE 17 - INTRAVENOUS AMIODARONE: REPRODUCTIVE TOXICITY STUDIES

<table>
<thead>
<tr>
<th>Species / Strain</th>
<th>Mode of Administration</th>
<th>Dosage (mg/kg per day)/Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat / CD® BR</td>
<td>I.V. (Infusion)</td>
<td>0 (saline), 0 (stock), 25, 50, 100/ Gestation days 8-16</td>
<td>An increased incidence of minor adverse physical examination findings related to the injection procedures and necropsy observations correlated with increased dosage and treatment duration. Body weight gains were decreased in the control-stock group; a dose-related reduction in body weight gains occurred in animals in the 50 and 100 mg/kg dosage groups compared to the saline and/or control-stock group. Food consumption was decreased for animals in the 100 mg/kg dosage group compared to either control group. Resorptions were increased, and live litter size and fetal body weights were decreased at a dosage of 100 mg/kg. Delayed ossification of the sternum and metacarpals occurred at the dosage of 100 mg/kg; this delay was reversible and was related to the reduced fetal body weights at this dosage level. Fetal thyroid tissues appeared normal in all groups. Based on reduced body weight gains and food consumption at a dosage of 100 mg/kg, the maternal NTEL was 50 mg/kg. The developmental NTEL was 50 mg/kg, based on resorptions, reductions in live litter size and fetal body weights, and delayed ossification of the sternum and metacarpals.</td>
</tr>
</tbody>
</table>
| Rabbit / Dutch | I.V. | 0, 5, 10 and 25/ Gestation days 8 - 16 | No drug-related changes in behaviour or maternal body weight were observed during the study. The only evidence of maternal toxicity observed was an increase in mortality that was statistically
significant at the high dose. The incidence of deaths was 1, 3, 5 and 8 in the control, low-, middle-, and high-dose groups, respectively. Necropsies revealed degeneration of the liver in the control, bronchopneumonia in the low-dose group, and bronchopneumonia with peritonitis and enteritis in the middle- and high-dose rabbits. Mean fetal weights were significantly decreased at the low- and middle-dose levels. Evidence of embryotoxicity was significant at 10 and 25 mg/kg. However, there was no significant difference in the number of minor abnormalities, and no major abnormalities were observed.

I.V. = Intravenous administration
REFERENCES

PART III: CONSUMER INFORMATION

□ APO-AMIODARONE
 Amiodarone Tablets BP
 200 mg amiodarone hydrochloride

IMPORTANT: PLEASE READ

This leaflet is part III of a three-part “Product Monograph” published when APO-AMIODARONE (Amiodarone Hydrochloride Tablets) was approved for sale in Canada and is designed specifically for Consumers. This leaflet is a summary and will not tell you everything about APO-AMIODARONE. Contact your doctor or pharmacist if you have any questions about the drug.

ABOUT THIS MEDICATION

What the medication is used for:
- Treatment of certain abnormal heart rhythms (arrhythmias).

What it does:
- APO-AMIODARONE has been prescribed to you by your doctor to restore or maintain a normal heart rhythm.

When it should not be used:
- Do not use APO-AMIODARONE if you are allergic to it or to any of the components of its formulation (see full list of components below). Contact your doctor immediately if you experience an allergic reaction or any severe or unusual side effects.
- Do not use APO-AMIODARONE if you have hepatitis, thyroid problems, or pulmonary disease (certain lung problems).

What the medicinal ingredient is:
APO-AMIODARONE is available in tablets containing 200 mg amiodarone hydrochloride as the active ingredient.

What the nonmedicinal ingredients are:
The non-medicinal ingredients in APO-AMIODARONE are: colloidal silicon dioxide, croscarmellose sodium, crospovidone, FD&C Red # 40 Aluminum Lake 38 to 42% and magnesium stearate.

What dosage forms it comes in:
APO-AMIODARONE (Amiodarone Hydrochloride Tablets) 200 mg is available as an oral tablet.

WARNINGS AND PRECAUTIONS

- Pulmonary fibrosis (permanent scarring of the lungs) can occur and can be fatal.
- Like other antiarrhythmics, APO-AMIODARONE can worsen or start an irregular heartbeat (arrhythmias).
- Liver injury is common with APO-AMIODARONE, but is usually mild, however it can be serious and even fatal in some cases.

BEFORE you use APO-AMIODARONE talk to your doctor if:
- you have hepatitis, thyroid problems or lung abnormalities,
- you are breast feeding, pregnant or planning on becoming pregnant,
- you anticipate undergoing any surgery,
- you have any allergies to this drug or its ingredients or components of the container
- you are taking any medications (see INTERACTIONS WITH THIS MEDICATION).

Precautions when taking APO-AMIODARONE
Consult your doctor if you experience these or other side effects, as the dose may have to be adjusted:
- APO-AMIODARONE may cause a worsening of the existing arrhythmias or precipitate a new arrhythmia.
- Both hyper- and hypothyroidism (too much or too little thyroid hormone released into the blood by the thyroid gland) may occur during, or soon after treatment with APO-AMIODARONE.
- One of the most serious complications is pulmonary (lung) toxicity, characterized by scarring or inflammation of the lungs. Clinical symptoms include cough, progressive shortness of breath, accompanied by weight loss and weakness.
- APO-AMIODARONE induces photosensitization in about 10% of patients. Sunscreen preparations or protective clothing may afford some protection to individual patients experiencing photosensitization. Blue-grey discoloration of exposed skin has been reported during long-term treatment. With discontinuation of therapy, the pigmentation fades slowly over a period of up to several years. The risk may be increased in patients of fair complexion or those with excessive sun exposure, and may be related to cumulative dose and duration of therapy.
- Loss of vision or other visual disturbances such as visual halos or blurred vision.
- Symptoms of nerve damage (peripheral neuropathy) such as pain, burning, or numbness.
- Progressive skin rash, often with blisters or lesions, which may lead to severe skin reactions that are sometimes fatal.

INTERACTIONS WITH THIS MEDICATION

You should ensure that your doctor and pharmacist know all the medicines you are taking, prescription, non-prescription or herbal.

Drugs that may interact with APO-AMIODARONE include:
Azoles, Cholestyramine, Beta blockers (e.g., propranolol), Calcium channel antagonists (e.g., verapamil), Cholesterol-lowering medications (e.g., simvastatin, atorvastatin), Cimetidine, Cyclosporine, Dabigatran, Digitalis, Digoxin, Disopyramide, Fentanyl, Flecainide, Fluoroquinolones, Lidocaine, Macrolide Antibiotics, Phenytoin, Procainamide, Protease inhibitors (e.g., indinavir) Quinidine, Sofosbuvir (alone or in combination with other antiviral drugs to treat Hepatitis C such as daclatasvir, simeprevir, ledipasvir) Warfarin

Grapefruit Juice and the herbal preparation St. John's Wort may also interact with APO-AMIODARONE.

PROPER USE OF THIS MEDICATION

Usual Adult Dose:
- It is very important that you take APO-AMIODARONE exactly as your doctor has instructed.
- Never increase or decrease the amount of APO-AMIODARONE you are taking unless your doctor tells you to.
- Loading Dose: normally 800 to 1600 mg/day for 1 to 3 weeks (occasionally longer). Maintenance Dose: normally 600 to 800 mg/day for one month and then 200 to 400 mg/day (occasionally 600 mg/day).
- APO-AMIODARONE may be taken as a single daily dose, or in patients with severe gastrointestinal intolerance, as a twice a day dose.

Overdose:
What to do in case of overdose
Contact a health care practitioner, the nearest hospital emergency department or the regional Poison Control Centre immediately, even though you may not feel sick.

Missed Dose:
If you happen to miss a dose, do not try to make up for it by doubling up on the dose next time. Just take your next regularly scheduled dose and try not to miss any more.

SIDE EFFECTS AND WHAT TO DO ABOUT THEM
- You may experience side effects with the use of APO-AMIODARONE.

North American experience with chronic oral amiodarone hydrochloride therapy suggest that amiodarone-associated adverse drug reactions are very common, having occurred in approximately 75% of patients taking 400 mg or more per day. The most serious adverse effects associated with the use of amiodarone hydrochloride involve your lungs, irregularities of your heart beat and hepatitis. Symptoms that suggest side effects relating to lung inflammation or scarring include: progressive shortness of breath, cough, weakness and weight loss. Symptoms that may suggest an irregularity of heart beat include: fainting, dizziness, light-headedness, weakness and chest pain.

Your doctor should monitor your blood for liver function. The following symptoms may be signs of liver problems: prolonged nausea and vomiting, abdominal pain or discoloration of the skin.

Other symptoms causing discontinuations less often have included disturbances of vision, reactions of the skin to sunlight, blue skin discoloration, life-threatening or even fatal skin reactions, eczema, hyperthyroidism and hypothyroidism.

Hypotension (low blood pressure), while seen, is uncommon (less than 1%) during amiodarone Tablets therapy.

Chronic (i.e., long-term) administration of amiodarone tablets in rare instances may lead to the development of nerve damage (peripheral neuropathy) that may resolve when amiodarone hydrochloride is discontinued, but this resolution has been slow and incomplete (see Precautions when taking APO-AMIODARONE).

Should you experience any of these while taking APO-AMIODARONE, consult your doctor immediately.

<table>
<thead>
<tr>
<th>Symptom / effect</th>
<th>Talk with your doctor or pharmacist In all cases</th>
<th>Stop taking drug and call your doctor or pharmacist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tremor/abnormal involuntary movements, lack of coordination, abnormal gait, dizziness.</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Blue skin discoloration</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Severe skin reactions (e.g. progressive skin rash with blisters) or allergic reaction (e.g. swelling of the lips, face, tongue and throat, trouble breathing)</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom / effect</th>
<th>Talk with your doctor or pharmacist</th>
<th>Stop taking drug and call your doctor or pharmacist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low blood pressure (fainting episodes, severe dizziness)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Shortness of breath, chest pain, irregular heart beat, racing heart</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Bleeding abnormalities (excessive bruising, easy bleeding (e.g., when brushing teeth)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Visual disturbances (halos or blurred vision), visual impairment</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Vomiting, abdominal pain, diarrhea</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Solar dermatitis/ photosensitivity (skin becomes sensitive to light)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Paresthesias (sensation of tingling, burning, crawling of the skin) and Peripheral motor and sensory neuropathies (e.g., muscular weakness)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cognitive disturbances (e.g., confusion, inability to concentrate)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Liver problems (e.g., yellowing skin or eyes, abdominal pain or vomiting)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Alopecia (loss of hair)</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

This is not a complete list of side effects. For any unexpected effects while taking APO-AMIODARONE, contact your doctor or pharmacist.

HOW TO STORE IT

- Keep bottle tightly closed.
- Store at 15°C to 30°C.
- Keep out of reach of children.

Reporting Side Effects

You can report any suspected side effects associated with the use of health products to Health Canada by:

- Visiting the Web page on Adverse Reaction Reporting (http://www.hc-sc.gc.ca/dhp-mps/medeff/report-declaration/index-eng.php) for information on how to report online, by mail or by fax; or
- Calling toll-free at 1-866-234-2345.

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

MORE INFORMATION

For more information, please contact your doctor, pharmacist or other healthcare professional. This leaflet plus the full product monograph, prepared for health professionals, can be obtained by contacting DISpedia, Apotex's Drug Information Service at:

1-800-667-4708

This leaflet can also be found at: http://www.apotex.ca/products

This leaflet was prepared by Apotex Inc., Toronto, Ontario, M9L 1T9

Date of Revision: April 6, 2017

REMINDER: This medicine has been prescribed only for you. Do not give it to anybody else. If you have any further questions, please ask your doctor or pharmacist.