PRESCRIBING INFORMATION # HEPARIN SODIUM 20 000 UNITS/500 ML IN DEXTROSE 5% INJECTION HEPARIN SODIUM 25 000 UNITS/500 ML IN 5% DEXTROSE INJECTION Heparin Sodium in 5% Dextrose 20 000 or 25 000 USP Units in Flexible Plastic Container Anticoagulant Hospira Healthcare Corporation 17300 Trans-Canada Highway Kirkland, Quebec H9J 2M5 Date of Approval: May 09, 2017 Submission Control No: 203541 # HEPARIN SODIUM 20 000 UNITS/500 ML IN DEXTROSE 5% INJECTION HEPARIN SODIUM 25 000 UNITS/500 ML IN 5% DEXTROSE INJECTION 20 000 or 25 000 USP Units in Flexible Plastic Container ## THERAPEUTIC CLASSIFICATION Anticoagulant ## **CLINICAL PHARMACOLOGY** Heparin inhibits reactions that lead to the clotting of blood and the formation of fibrin clots both *in vitro* and *in vivo*. Heparin acts at multiple sites in the normal coagulation system. Small amounts of heparin in combination with antithrombin III (heparin cofactor) can inhibit thrombosis by inactivating activated Factor X and inhibiting the conversion of prothrombin to thrombin. Once active thrombosis has developed, larger amounts of heparin can inhibit further coagulation by inactivating thrombin and preventing the conversion of fibrinogen to fibrin. Heparin also prevents the formation of a stable fibrin clot in inhibiting the activation of the fibrin stabilizing factor. Bleeding time is usually unaffected by heparin. Clotting time is prolonged by full therapeutic doses of heparin; in most cases, it is not measurably affected by low doses of heparin. Peak plasma levels of heparin are achieved 2 to 4 hours following subcutaneous administration, although there are considerable individual variations. Log linear plots of heparin plasma concentrations, with time for a wide range of dose levels, are linear, which suggests the absence of zero order processes. The liver and the reticuloendothelial system are the site of biotransformation. The biphasic elimination curve, a rapidly declining alpha phase ($t^{1/2}=10^{\circ}$) and after the age of 40 a slower beta phase, indicate uptake in organs. The absence of a relationship between anticoagulant half-life and concentration half-life may reflect factors such as protein binding of heparin. Heparin does not have fibrinolytic activity; therefore, it will not lyse existing clots. Solutions containing carbohydrate in the form of dextrose restore blood glucose levels and provide calories. Carbohydrate in the form of dextrose may aid in minimizing liver glycogen depletion and exerts a protein-sparing action. Dextrose injected parenterally undergoes oxidation to carbon dioxide and water. Water is an essential constituent of all body tissues and accounts for approximately 70% of total body weight. Average normal adult daily requirements range from two to three liters (1.0 to 1.5 liters each for insensible water loss by perspiration and urine production). Water balance is maintained by various regulatory mechanisms. Water distribution depends primarily on the concentration of electrolytes in the body compartments and sodium (Na+) plays a major role in maintaining physiologic equilibrium. #### INDICATIONS AND USAGE **Heparin sodium is indicated for:** Atrial fibrillation with embolization; diagnosis and treatment of acute and chronic consumption coagulopathies (disseminated intravascular coagulation); prevention of clotting in arterial and heart surgery; prophylaxis and treatment of peripheral arterial embolism; as an anticoagulant in extracorporeal arterial circulation and dialysis procedures. #### CONTRAINDICATIONS **Heparin sodium should not be used in patients:** With severe thrombocytopenia; in whom suitable blood coagulation tests (e.g., the whole blood clotting time, partial thromboplastin time, etc.) cannot be performed at appropriate intervals (this contraindication refers to full-dose heparin; there is usually no need to monitor coagulation parameters in patients receiving low-dose heparin). With an uncontrollable active bleeding state (see **WARNINGS**), except when this is due to disseminated intravascular coagulation. Dextrose injection without electrolytes should not be administered simultaneously with blood through the same infusion set because of possible rouleau formation. #### WARNINGS Heparin is not intended for intramuscular use. **Hypersensitivity**: Patients with documented hypersensitivity to heparin should be given the drug only in clearly life-threatening situations. **Hemorrhage:** Hemorrhage can occur at virtually any site in patients receiving heparin. An unexplained fall in hematocrit, fall in blood pressure, or any other unexplained symptom should lead to serious consideration of a hemorrhagic event. Heparin sodium should be used with extreme caution in disease states in which there is increased danger of hemorrhage. Some of the conditions in which increased danger of hemorrhage exists are: **Cardiovascular** – Subacute bacterial endocarditis. Severe hypertension. **Surgical** – During and immediately following (a) spinal tap or spinal anesthesia or (b) major surgery, especially involving the brain, spinal cord or eye. **Hematologic** – Conditions associated with increased bleeding tendencies, such as hemophilia, thrombocytopenia, and some vascular purpuras. **Gastrointestinal** – Ulcerative lesions and continuous tube drainage of the stomach or small intestine. **Other** – Menstruation, liver disease with impaired hemostasis. **Coagulation Testing:** When heparin sodium is administered in therapeutic amounts, its dosage should be regulated by frequent blood coagulation tests. If the coagulation test is unduly prolonged or if hemorrhage occurs, heparin sodium should be discontinued promptly (see **OVERDOSAGE**). **Thrombocytopenia:** Thrombocytopenia has been reported to occur in patients receiving heparin, with a reported incidence of 0 to 30%. Mild thrombocytopenia (count greater than 100 000/mm³) may remain stable or reverse even if heparin is continued. However, thrombocytopenia of any degree should be monitored closely. If the count falls below 100 000/mm³ or if recurrent thrombosis develops (see **PRECAUTIONS**, **White Clot Syndrome**), the heparin product should be discontinued. If continued heparin therapy is essential, administration of heparin from a different organ source can be reinstituted with caution. The intravenous administration of these solutions can cause fluid and/or solute overloading, resulting in dilution of serum electrolyte concentrations, overhydration, congested states or pulmonary edema. The risk of dilutional states is inversely proportional to the electrolyte concentrations of administered parenteral solutions. The risk of solute overload causing congested states with peripheral and pulmonary edema is directly proportional to the electrolyte concentrations of such solutions. Excessive administration of potassium-free solutions may result in significant hypokalemia. Heparin sodium contains sodium metabisulfite, a sulfite that may cause allergic-type reactions including anaphylactic symptoms and life-threatening or less severe asthmatic episodes in certain susceptible people. The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in nonasthmatic people. As the dosage of solutions of heparin sodium must be titrated to individual patient response, additive medications should not be delivered via this solution. # PRECAUTIONS General # a. White Clot Syndrome It has been reported that patients on heparin may develop new thrombus formation in association with thrombocytopenia resulting from irreversible aggregation of platelets induced by heparin, the so-called "white clot syndrome". The process may lead to severe thromboembolic complications like skin necrosis, gangrene of the extremities that may lead to amputation, myocardial infarction, pulmonary embolism, stroke, and possibly death. Therefore, heparin administration should be promptly discontinued if a patient develops new thrombosis in association with thrombocytopenia. ## b. Heparin Resistance Increased resistance to heparin is frequently encountered in fever, thrombosis, thrombophlebitis, infections with thrombosing tendencies, myocardial infarction, cancer and in postsurgical patients. # c. Increased Risk in Older Women A higher incidence of bleeding has been reported in women over 60 years of age. **Laboratory Tests:** Periodic platelet counts, hematocrits and tests for occult blood in stool are recommended during the entire course of heparin therapy, regardless of the route of administration (see **DOSAGE AND ADMINISTRATION**). # **Drug Interactions** **Oral Anticoagulants:** Heparin sodium may prolong the one-stage prothrombin time. Therefore, when heparin sodium is given with dicumarol or warfarin sodium, a period of at least 5 hours after the last intravenous dose should elapse before blood is drawn if a valid PROTHROMBIN time is to be obtained. Heparin may be used to prevent blood clotting during blood transfusions and in blood sampling for laboratory purposes. However, heparinized blood should not be used for isoagglutinin, complement, or for an erythrocyte fragility test, or for platelet counts. In addition, leukocyte counts should be performed within 2 hours after heparin is added to the blood sample. **Platelet Inhibitors:** Drugs such as acetylsalicylic acid, dextran, phenylbutazone, ibuprofen, indomethacin, dipyridamole, hydroxychloroquine and others that interfere with plateletaggregation reactions (the main hemostatic defense of heparinized patients) may induce bleeding and should be used with caution in patients receiving heparin sodium. **Other Interactions:** Digitalis, quinine, tetracyclines, nicotine, antihistamines, or intravenous (i.v.) nitroglycerin may partially counteract the anticoagulant action of heparin sodium. Drugs such as codeine phosphate, pethidine hydrochloride, streptomycin, erythromycin, kanamycin, neomycin, novobiocin, ampicillin, penicillins, glucocorticoids, polymyxin B, vancomycin, hydrocortisone sodium succinate, pentobarbitone, promazine hydrochloride, vitamin B complex and vitamin C may complex with heparin. This complex may be reversible (heparin rebound) and may result in excess bleeding at the surgical site. Extra protamine sulfate may then be indicated. Intravenously administered ethacrynic acid can cause gastrointestinal (G.I.) bleeding. However, a significantly higher incidence of G.I. bleeding has been attributed to the concurrent use of i.v. ethacrynic acid and heparin. ## **Drug/Laboratory Test Interactions** **Hyperaminotransferasemia:** Significant elevations of amino transferase (SGOT [S-AST] and SGPT [S-ALT]) levels have occurred in a high percentage of patients (and healthy subjects) who have received heparin. Since aminotransferase determinations are important in the differential diagnosis of myocardial infarction, liver disease, and pulmonary emboli, rises that might be caused by drugs (like heparin) should be interpreted with caution. Carcinogenesis, Mutagenesis, Impairment of Fertility: No long-term studies in animals have been performed to evaluate the carcinogenic potential of heparin. Also, no reproduction studies in animals have been performed concerning mutagenesis or impairment of fertility. #### **Pregnancy** **Teratogenic Effects:** Animal reproduction studies have not been conducted with heparin sodium or dextrose. It is also not known whether heparin sodium or dextrose can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Heparin sodium or dextrose should be given to a pregnant woman only if clearly needed. Nonteratogenic Effects: Heparin does not cross the placental barrier. **Nursing Mothers:** Heparin is not excreted in human milk. **Pediatric Use: See DOSAGE AND ADMINISTRATION.** Solutions containing dextrose should be used with caution in patients with known subclinical or overt diabetes mellitus. Do not administer unless the solution is clear and container is undamaged. Discard unused portion. # **ADVERSE REACTIONS** Hemorrhage: Hemorrhage is the chief complication that may result from heparin therapy (see WARNINGS). An overly prolonged clotting time or minor bleeding during therapy can usually be controlled by withdrawing the drug (see OVERDOSAGE). It should be appreciated that gastrointestinal or urinary tract bleeding during anticoagulant therapy may indicate the presence of an underlying occult lesion. Bleeding can occur at any site but certain specific hemorrhagic complications may be difficult to detect: - a. Adrenal hemorrhage, with resultant acute adrenal insufficiency, has occurred during anticoagulant therapy. Therefore, such treatment should be discontinued in patients who develop signs and symptoms of acute adrenal hemorrhage and insufficiency. Initiation of corrective therapy should not depend on laboratory confirmation of the diagnosis, since any delay in an acute situation may result in the patient's death. - b. Ovarian (*corpus luteum*) hemorrhage developed in a number of women of reproductive age receiving short- or long-term anticoagulant therapy. This complication, if unrecognized, may be fatal. - c. Retroperitoneal hemorrhage. **Local Irritation:** Local irritation, erythema, mild pain, hematoma or ulceration may follow deep subcutaneous (intrafat) injection of heparin sodium. These complications are much more common after intramuscular use, and such use is not recommended. **Hypersensitivity:** Generalized hypersensitivity reactions have been reported, with chills, fever and urticaria as the most usual manifestations, and asthma, rhinitis, lacrimation, headache, nausea and vomiting and anaphylactoid reactions, including shock, occurring more rarely. Itching and burning, especially on the plantar site of the feet, may occur. Thrombocytopenia has been reported to occur in patients receiving heparin, with a reported incidence of 0 to 30%. While often mild and of no obvious clinical significance, such thrombocytopenia can be accompanied by severe thromboembolic complications such as skin necrosis, gangrene of the extremities that may lead to amputation, myocardial infarction, pulmonary embolism, stroke, and possibly death (see **WARNINGS** and **PRECAUTIONS**). Certain episodes of painful, ischemic and cyanosed limbs have, in the past, been attributed to allergic vasospastic reactions. Whether these are, in fact, identical to the thrombocytopenia-associated complications remains to be determined. **Miscellaneous:** Osteoporosis following long-term administration of high doses of heparin, cutaneous necrosis after systemic administration, suppression of aldosterone synthesis, delayed transient alopecia, priapism and rebound hyperlipemia on discontinuation of heparin sodium have also been reported. Significant elevations of aminotransferase (SGOT [S-AST] and SGPT [S-ALT]) levels have occurred in a high percentage of patients (and healthy subjects) who have received heparin. Reactions which may occur because of the solution or the technique of administration include febrile response, infection at the site of injection, venous thrombosis or phlebitis extending from the site of injection, extravasation and hypervolemia. If an adverse reaction does occur, discontinue the infusion, evaluate the patient, institute appropriate therapeutic countermeasures and save the remainder of the fluid for examination, if deemed necessary. #### **OVERDOSAGE** **Symptoms:** Bleeding is the chief sign of heparin overdosage. Nosebleeds, blood in urine or tarry stools may be noted as the first sign of bleeding. Easy bruising or petechial formations may precede frank bleeding. **Treatment:** Neutralization of heparin effect. When clinical circumstances (bleeding) require reversal of heparinization, protamine sulfate (1% solution) by slow infusion will neutralize heparin sodium. **No more than 50 mg** should be administered, **very slowly**, in any 10 minute period. Each mg of protamine sulfate neutralizes approximately 100 USP heparin units. The amount of protamine required decreases over time as heparin is metabolized. Although the metabolism of heparin is complex, it may, for the purpose of choosing a protamine dose, be assumed to have a half-life of about ½ hour after intravenous injection. Administration of protamine sulfate can cause severe hypotensive and anaphylactoid reactions. Because fatal reactions often resembling anaphylaxis have been reported, the drug should be given only when resuscitation techniques and treatment of anaphylactoid shock are readily available. For additional information, the labelling of Protamine Sulfate Injection USP products should be consulted. In the event of overhydration or solute overload, re-evaluate the patient and institute appropriate corrective measures (see **WARNINGS** and **PRECAUTIONS**). ### DOSAGE AND ADMINISTRATION Heparin sodium is not effective by oral administration and these premixed formulations should be given by intermittent intravenous injection or intravenous infusion. The dosage of heparin sodium should be adjusted according to the patient's coagulation test results. When heparin is given by continuous intravenous infusion, the coagulation time should be determined approximately every 4 hours in the early stages of treatment. When the drug is administered intermittently by intravenous injection, coagulation tests should be performed before each injection during the early stages of treatment and at appropriate intervals thereafter. Dosage is considered adequate when the activated partial thromboplastin time (APTT) is 1.5 to 2 times normal or when the whole blood clotting time is elevated approximately 2.5 to 3 times the control value. Periodic platelet counts, hematocrits and tests for occult blood in stool are recommended during the entire course of heparin therapy, regardless of the route of administration. Converting to an Oral Anticoagulant: When an oral anticoagulant of the coumarin or similar type is to be begun in patients already receiving heparin sodium, baseline and subsequent tests of prothrombin activity must be determined at a time when heparin activity is too low to affect the prothrombin time. If continuous intravenous (i.v.) heparin infusion is used, prothrombin time can usually be measured at any time. In converting from heparin to an oral anticoagulant, the dose of the oral anticoagulant should be the usual initial amount and thereafter prothrombin time should be determined at the usual intervals. To ensure continuous anticoagulation, it is advisable to continue full heparin therapy for several days after the prothrombin time has reached the therapeutic range. Heparin therapy may then be discontinued without tapering. # Therapeutic Anticoagulant Effect with Full-Dose Heparin Although dosage must be adjusted for the individual patient according to the results of suitable laboratory tests, the following dosage schedules may be used as guidelines: | Method of Administration | Frequency | Recommended Dose* | |--|--------------------|---| | Intermittent
Intravenous
Injection | Initial Dose | 10 000 Units, either
undiluted or in 50 – 100 mL of
5% Dextrose Injection | | | Every 4 to 6 hours | 5 000 – 10 000 Units,
either undiluted or in 50 – 100
mL of 5% Dextrose Injection | | Method of Administration | Frequency | Recommended Dose* | | | | | | |--|---|---|--|--|--|--|--| | Continuous
Intravenous | Initial Dose | 5 000 Units by I.V. Injection | | | | | | | Infusion | Continuous | 20 000 – 40 000
Units/24 hours in 1 000 mL of
5% Dextrose Injection | | | | | | | *Based on 150 lb. (68 kg) patient. | | | | | | | | | Pediatric Use: Follow recommendations of appropriate pediatric reference texts. In general, the following dosage schedule may be used as a guideline. | | | | | | | | | Initial Dose | 50 Units/kg (I.V. drip) | | | | | | | | Maintenance Dose | 100 Units/kg (l.V. drip) every
4 hours, or
20 000 Units/M ² /
continuously for 24 hours | | | | | | | **Surgery of the Heart and Blood Vessels:** Patients undergoing total body perfusion for openheart surgery should receive an initial dose of not less than 150 units of heparin sodium per kilogram of body weight. Frequently, a dose of 300 units per kilogram is used for procedures estimated to last less than 60 minutes or 400 units per kilogram for those estimated to last longer than 60 minutes. **Extracorporeal Dialysis:** Follow equipment manufacturers' operating directions carefully. Parenteral drug products should be inspected visually for particulate matter and discolouration prior to administration, whenever solution and container permit. Slight discolouration does not alter potency (see **PRECAUTIONS**). ## INSTRUCTIONS FOR USE #### To Open Tear outer wrap at notch and remove container. Some opacity of the plastic due to moisture absorption during the sterilization process may be observed. This is normal and does not affect the solution quality or safety. The opacity will diminish gradually. # **Preparation for Administration (use aseptic technique)** - 1. Close flow control clamp of administration set. - 2. Remove cover from outlet port at bottom of container. - 3. Insert piercing pin of administration set into port with a twisting motion until the set is firmly seated. NOTE: See full directions on administration set carton. - 4. Suspend container from hanger. - 5. Squeeze and release drip chamber to establish proper fluid level in chamber. - 6. Open flow control clamp and clear air from set. Close clamp. - 7. Attach set to venipuncture device. If device is not indwelling, prime and make venipuncture. - 8. Regulate rate of administration with flow control clamp. ## WARNING: Do not use flexible container in series connections. ## **HOW SUPPLIED** Intravenous solutions with heparin sodium are supplied in single-dose flexible plastic containers, in various sizes and concentrations, as shown in the accompanying Table. #### **Contents and Characteristics** | List
No. | Product | Heparin
Sodium
(Units/mL) | Per 100 mL | | | Osmolarity | | | |-------------|---|---------------------------------|------------------------------|------------------------------|----------|-------------------------|---------------------|--------------------| | | | | Heparin
Sodium
(Units) | Dextrose
(anhy-
drous) | Tonicity | mOsmol/
liter (calc) | pН | Solution
Volume | | 07760 | Heparin
Sodium
20 000 USP
Units in 5%
Dextrose
Injection | 40 | 4 000 | 5 g | Isotonic | 287 | 5.4 (5.2
to 6.0) | 500 mL | | 07761 | Heparin
Sodium
25 000 USP
Units in 5%
Dextrose
Injection | 50 | 5 000 | 5 g | Isotonic | 287 | 5.4 (5.2
to 6.0) | 500 mL | Exposure of pharmaceutical products to heat should be minimized. Protect from freezing. It is recommended that the product be stored between 20 to 25°C (see "Controlled Room Temperature" in USP), however, brief exposure to 40°C does not adversely affect the product. # **DESCRIPTION** Intravenous solutions with heparin sodium (derived from porcine intestinal mucosa) are sterile, nonpyrogenic fluids for intravenous administration. Each 100 mL contains: Heparin sodium 4 000 or 5 000 USP Heparin Units; dextrose anhydrous 5 g; citric acid anhydrous 51 mg and dibasic sodium phosphate anhydrous 103 mg added as buffers; sodium metabisulfite 20 mg, added as an antioxidant. Each liter contains the following electrolytes: sodium 17 mEq; phosphate 15 mEq and citrate 8 mEq. May contain citric acid for pH adjustment. See Table for summary of contents and characteristics of these solutions. Heparin Sodium USP is a heterogenous group of straight-chain anionic muco-polysaccharides, called glycosaminoglycans, having anticoagulant properties. Although others may be present, the main sugars occurring in heparin are: - (1) α -L-iduronic acid 2-sulfate, - (2) 2-deoxy-2-sulfamino- α -D-glucose 6-sulfate, - (3) β-D-glucuronic acid, - (4) 2-acetamido-2-deoxy- α -D-glucose, - (5) α -L-iduronic acid. These sugars are present in decreasing amounts, usually in the order (2)>(1)>(4)>(3)>(5), and are joined by glycosidic linkages, forming polymers of varying sizes. Heparin is strongly acidic because of its content of covalently linked sulfate and carboxylic acid groups. In heparin sodium, the acidic protons of the sulfate units are partially replaced by sodium ions. The potency is determined by a biological assay, using a USP reference standard based on units of heparin activity per milligram. # **Structure of Heparin Sodium (representative subunits):** Dextrose USP is chemically designated D-glucose, monohydrate ($C_6H_{12}O_6 \cdot H_2O$), a hexose sugar freely soluble in water. It has the following structural formula: Water for Injection USP is chemically designated H₂O. The flexible plastic container is fabricated from a specially formulated polyvinyl chloride. Water can permeate from inside the container into the overwrap but not in amounts sufficient to affect the solution significantly. Solutions inside the plastic container can also leach out certain of its chemical components in very small amounts before the expiration period is attained. However, the safety of the plastic has been confirmed by tests in animals according to USP biological standards for plastic containers.