PRODUCT MONOGRAPH

Pr Taro-Sumatriptan

Sumatriptan succinate injection, BP
6 mg sumatriptan
6 mg/0.5 mL

Subcutaneous Injection and Auto-injector

5-HT₁ Receptor Agonist
Migraine Therapy

Taro Pharmaceuticals Inc.
130 East Drive
Brampton, Ontario
L6T 1C1

Date of Preparation:
June 26, 2019

Control #: 228800
Table of Contents

PART I: HEALTH PROFESSIONAL INFORMATION .. 3
 SUMMARY PRODUCT INFORMATION ... 3
 INDICATIONS AND CLINICAL USE ... 3
 CONTRAINDICATIONS ... 3
 WARNINGS AND PRECAUTIONS ... 4
 ADVERSE REACTIONS ... 10
 DRUG INTERACTIONS ... 12
 DOSAGE AND ADMINISTRATION ... 13
 OVERDOSAGE ... 15
 ACTION AND CLINICAL PHARMACOLOGY .. 15
 STORAGE AND STABILITY ... 16
 DOSAGE FORMS, COMPOSITION AND PACKAGING 17

PART II: SCIENTIFIC INFORMATION .. 18
 PHARMACEUTICAL INFORMATION .. 18
 CLINICAL TRIALS ... 19
 DETAILED PHARMACOLOGY ... 20
 TOXICOLOGY ... 24
 REFERENCES ... 30

PART III: CONSUMER INFORMATION .. 32
PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form / Strength</th>
<th>Non-medicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous</td>
<td>Injection, 6 mg sumatriptan per 0.5 mL and Autoinjector</td>
<td>Sodium Chloride, Water for injection. The needle shield contains dry natural rubber (a latex derivative).</td>
</tr>
</tbody>
</table>

INDICATIONS AND CLINICAL USE

Adults
Taro-Sumatriptan (sumatriptan succinate) is indicated for the acute treatment of migraine attacks, with or without aura.

Taro-Sumatriptan is not intended for the prophylactic therapy of migraine or for use in the management of hemiplegic, basilar or ophthalmoplegic migraine (see **CONTRAINDICATIONS**).

Safety and efficacy have not been established for cluster headache which is present in an older, predominantly male population.

Pediatrics (< 18 years of age):
The safety and efficacy of sumatriptan succinate in children has not been established and its use in this age group is not recommended (see **WARNINGS AND PRECAUTIONS**).

Geriatrics (> 65 years of age):
Experience of the use of sumatriptan succinate in patients aged over 65 years is limited. Therefore the use of Taro-Sumatriptan in patients aged over 65 years is not recommended (see **WARNINGS AND PRECAUTIONS**).

CONTRAINDICATIONS

Taro-Sumatriptan (sumatriptan succinate) is contraindicated in patients with history, symptoms, or signs of ischemic cardiac, cerebrovascular, or peripheral vascular syndromes, valvular heart disease or cardiac arrhythmias (especially tachycardias). In addition, patients...
with other significant underlying cardiovascular diseases (e.g. atherosclerotic disease, congenital heart disease) should not receive Taro-Sumatriptan. Ischemic cardiac syndromes include, but are not limited to, angina pectoris of any type (e.g. stable angina of effort and vasospastic forms of angina such as the Prinzmetal’s variant), all forms of myocardial infarction, and silent myocardial ischemia. Cerebrovascular syndromes include, but are not limited to, strokes of any type as well as transient ischemic attacks (TIAs). Peripheral vascular disease includes, but is not limited to, ischemic bowel disease, or Raynaud’s syndrome (see WARNINGS AND PRECAUTIONS).

Because Taro-Sumatriptan may increase blood pressure, it is contraindicated in patients with uncontrolled or severe hypertension.

Concurrent administration of monoamine oxidase (MAO) inhibitors or use within 2 weeks of discontinuation of MAO inhibitor therapy is contraindicated (see ACTION AND CLINICAL PHARMACOLOGY, and DRUG INTERACTIONS).

Ergot-containing drugs have been reported to cause prolonged vasospastic reactions. Because Taro-Sumatriptan may also cause coronary vasospasm and these effects may be additive, the use of Taro-Sumatriptan within 24 hours before or after treatment with other 5-HT₁ receptor agonists, or ergotamine-containing drugs or their derivatives (e.g. dihydroergotamine, methysergide) is contraindicated.

Taro-Sumatriptan should not be administered to patients with severe hepatic impairment (see WARNINGS AND PRECAUTIONS, Special Populations and DOSAGE AND ADMINISTRATION).

Taro-Sumatriptan is contraindicated in patients with hemiplegic, basilar or ophthalmoplegic migraine.

Taro-Sumatriptan is contraindicated in patients with hypersensitivity to sumatriptan or to any of the ingredients of the formulation, or component of the container see DOSAGE FORMS, COMPOSITION AND PACKAGING section of the product monograph.

Taro-Sumatriptan should not be given intravenously because of its potential to cause coronary vasospasm.

WARNINGS AND PRECAUTIONS

General

Taro-Sumatriptan (sumatriptan succinate) should only be used where a clear diagnosis of migraine has been established.

Cluster Headache: There is insufficient information on the efficacy and safety of sumatriptan succinate in the treatment of cluster headache, which is present in an older, predominantly male population. The need for prolonged use and the demand for repeated medication in this condition renders the dosing information inapplicable for cluster headache.
Psychomotor Impairment: Patients should be cautioned that drowsiness may occur as a result of treatment with Taro-Sumatriptan. They should be advised not to perform skilled tasks (e.g. driving or operating machinery) if drowsiness occurs.

Medication Overuse Headache: Overuse of acute headache treatments has been associated with the exacerbation of headache (medication overuse headache, MOH) in susceptible patients. Withdrawal of the treatment may be necessary.

Latex Allergy: The needle shield of the Taro-Sumatriptan pre-filled syringe contains dry natural rubber (a latex derivative) that has the potential to cause allergic reactions in latex sensitive individuals.

Cardiovascular

Risk of Myocardial Ischemia and/or Infarction and Other Adverse Cardiac Events:

Sumatriptan succinate has been associated with transient chest and/or neck pain, pressure, heaviness and tightness, which may resemble angina pectoris. In rare cases, the symptoms have been identified as being the likely result of coronary vasospasm or myocardial ischemia. Rare cases of serious coronary events or arrhythmia have occurred following use of sumatriptan succinate. Taro-Sumatriptan should not be given to patients who have documented ischemic or vasospastic coronary artery disease (CAD) (see CONTRAINDICATIONS). It is strongly recommended that Taro-Sumatriptan not be given to patients in whom unrecognized CAD is predicted by the presence of risk factors (e.g. hypertension, hypercholesterolemia, smoking, obesity, diabetes, strong family history of CAD, female who is surgically or physiologically postmenopausal, or male who is over 40 years of age) unless a cardiovascular evaluation provides satisfactory clinical evidence that the patient is reasonably free of coronary artery and ischemic myocardial disease or other significant underlying cardiovascular disease. The sensitivity of cardiac diagnostic procedures to detect cardiovascular disease or predisposition to coronary artery vasospasm is unknown. If, during the cardiovascular evaluation, the patient’s medical history or electrocardiographic investigations reveal findings indicative of, or consistent with, coronary artery vasospasm or myocardial ischemia, Taro-Sumatriptan should not be administered (see CONTRAINDICATIONS).

For patients with risk factors predictive of CAD, who are considered to have a satisfactory cardiovascular evaluation, the first dose of Taro-Sumatriptan should be administered in the setting of a physician’s office or similar medically staffed and equipped facility. Because cardiac ischemia can occur in the absence of clinical symptoms, consideration should be given to obtaining electrocardiograms in patients with risk factors during the interval immediately following administration of Taro-Sumatriptan on the first occasion of use. However, an absence of drug-induced cardiovascular effects on the occasion of the initial dose does not preclude the possibility of such effects occurring with subsequent administrations.

Intermittent long term users of Taro-Sumatriptan who have or acquire risk factors predictive of CAD as described above, should receive periodic interval cardiovascular evaluations over the course of treatment.
If symptoms consistent with angina occur after the use of Taro-Sumatriptan, ECG evaluation should be carried out to look for ischemic changes.

The systematic approach described above is intended to reduce the likelihood that patients with unrecognized cardiovascular disease will be inadvertently exposed to Taro-Sumatriptan.

Discomfort in the chest, neck, throat, and jaw (including pain, pressure, heaviness, tightness, and dyspnea) has been reported after administration of sumatriptan succinate. Because 5-HT1 agonists may cause coronary vasospasm, patients who experience signs or symptoms suggestive of angina following sumatriptan succinate administration, should be evaluated for the presence of CAD or a predisposition to variant angina before receiving additional doses, and should be monitored electrocardiographically if dosing is resumed and similar symptoms recur. Similarly, patients who experience other symptoms or signs suggestive of decreased arterial flow, such as ischemic bowel syndrome or Raynaud’s syndrome following sumatriptan succinate should be evaluated for atherosclerosis or predisposition to vasospasm (see CONTRAINDICATIONS and WARNINGS and PRECAUTIONS, and ADVERSE DRUG REACTIONS, Clinical Trial Adverse Drug Reactions).

Cardiac Events and Fatalities Associated with 5-HT1 Agonists:
Taro-Sumatriptan can cause coronary artery vasospasm. Serious adverse cardiac events, including acute myocardial infarction, life threatening disturbances of cardiac rhythm, and death have been reported within a few hours following the administration of 5-HT1 agonists. Considering the extent of use of 5-HT1 agonists in patients with migraine, the incidence of these events is extremely low. The fact that some of these events have occurred in patients with no prior cardiac disease history and with documented absence of CAD, and the close proximity of the events to sumatriptan succinate use support the conclusion that some of these cases were caused by the drug. In many cases, however, where there has been a known underlying coronary artery disease, the relationship is uncertain.

Premarketing Experience with Sumatriptan Succinate:
Among the more than 1900 patients with migraine who participated in premarketing controlled clinical trials of subcutaneous sumatriptan succinate, there were eight patients who sustained clinical events during or shortly after receiving sumatriptan succinate that may have reflected coronary artery vasospasm. Six of these eight patients had ECG changes consistent with transient ischemia, but without accompanying clinical symptoms or signs. Of these eight patients, four had either findings suggestive of CAD or risk factors predictive of CAD prior to study enrolment.

Postmarketing Experience with Sumatriptan Succinate:
Serious cardiovascular events, some resulting in death, have been reported in association with the use of sumatriptan succinate. The uncontrolled nature of postmarketing surveillance, however, makes it impossible to determine definitively the proportion of the reported cases that were actually caused by sumatriptan succinate or to reliably assess causation in individual cases. On clinical grounds, the longer the latency between the administration of sumatriptan succinate and the onset of the clinical event, the less likely the association is to be causative. Accordingly, interest has focused on events beginning within 1 hour of the administration of sumatriptan succinate.
Cardiac events that have been observed to have onset within 1 hour of sumatriptan succinate administration include: coronary artery vasospasm, transient ischemia, myocardial infarction, ventricular tachycardia and ventricular fibrillation, cardiac arrest, and death.

Some of these events occurred in patients who had no findings of CAD and appear to represent consequences of coronary artery vasospasm. However, among reports from the USA of serious cardiac events occurring within 1 hour of sumatriptan succinate administration, almost all of the patients had risk factors predictive of CAD and the presence of significant underlying CAD was established in most cases (see CONTRAINDICATIONS).

Cerebrovascular Events and Fatalities with 5-HT₁ Agonists:
Cerebral hemorrhage, subarachnoid hemorrhage, stroke and other cerebrovascular events have been reported in patients treated with subcutaneous sumatriptan succinate, and some have resulted in fatalities. The relationship of sumatriptan succinate to these events is uncertain. In a number of cases, it appears possible that the cerebrovascular events were primary, sumatriptan succinate having been administered in the incorrect belief that the symptoms experienced were a consequence of migraine when they were not. Before treating migraine headaches with Taro-Sumatriptan, in patients not previously diagnosed as migraineurs, and in migraineurs who present with atypical symptoms, care should be taken to exclude other potentially serious neurological conditions. If a patient does not respond to the first dose, the opportunity should be taken to review the diagnosis before a second dose is given. It should also be noted that patients with migraine may be at increased risk of certain cerebrovascular events (e.g. stroke, hemorrhage, TIA).

Special Cardiovascular Pharmacology Studies:
In subjects (n=10) with suspected coronary artery disease undergoing angiography, a 5-HT₁ agonist at a subcutaneous dose of 1.5 mg produced an 8% increase in aortic blood pressure, an 18% increase in pulmonary artery blood pressure, and an 8% increase in systemic vascular resistance. In addition, mild chest pain or tightness was reported by four subjects. Clinically significant increases in blood pressure were experienced by three of the subjects (two of whom also had chest pain/discomfort). Diagnostic angiogram results revealed that 9 subjects had normal coronary arteries and 1 had insignificant coronary artery disease.

In an additional study with this same drug, migraine patients (n=35) free of cardiovascular disease were subjected to assessments of myocardial perfusion by positron emission tomography while receiving a subcutaneous 1.5 mg dose in the absence of a migraine attack. Reduced coronary vasodilatory reserve (~10%), increase in coronary resistance (~20%), and decrease in hyperemic myocardial blood flow (~10%), were noted.

Similar studies with sumatriptan succinate have not been done. However, owing to the common pharmacodynamic actions of 5-HT₁ agonists, the possibility of cardiovascular effects of the nature described above should be considered for any agent of this pharmacological class.

Other Vasospasm Related Events:
5-HT₁ agonists may cause vasospastic reactions other than coronary artery vasospasm. Extensive post-market experience has shown the use of sumatriptan succinate to be associated with rare occurrences of peripheral vascular ischemia and colonic ischemia with abdominal pain and bloody
diarrhea, and in isolated cases, there was no previous history or concomitant medications.

Increase in Blood Pressure:
Significant elevation in blood pressure, including hypertensive crisis, has been reported on rare occasions in patients with and without a history of hypertension. Taro-Sumatriptan is contraindicated in patients with uncontrolled or severe hypertension (see CONTRAINDICATIONS). In patients with controlled hypertension, Taro-Sumatriptan should be administered with caution, as transient increases in blood pressure and peripheral vascular resistance have been observed in a small portion of patients.

Immune
Rare hypersensitivity (anaphylaxis/anaphylactoid) reactions may occur in patients receiving 5-HT1 agonists such as Taro-Sumatriptan. Such reactions can be life threatening or fatal. In general, hypersensitivity reactions to drugs are more likely to occur in individuals with a history of sensitivity to multiple allergens (see CONTRAINDICATIONS). Owing to the possibility of cross-reactive hypersensitivity reactions, Taro-Sumatriptan should not be used in patients having a history of hypersensitivity to chemically related 5-HT1 receptor agonists. There have been reports of patients with known hypersensitivity to sulphonamides exhibiting an allergic reaction following administration of sumatriptan succinate. Reactions ranged from cutaneous hypersensitivity to anaphylaxis.

Neurologic
Care should be taken to exclude other potentially serious neurologic conditions before treating headache in patients not previously diagnosed with migraine headache or who experience a headache that is atypical for them. There have been rare reports where patients received 5-HT1 agonists for severe headaches that were subsequently shown to have been secondary to an evolving neurologic lesion. For newly diagnosed patients or patients presenting with atypical symptoms, the diagnosis of migraine should be reconsidered if no response is seen after the first dose of Taro-Sumatriptan.

Seizures: Caution should be observed if Taro-Sumatriptan is to be used in patients with a history of seizures or other risk factors, such as structural brain lesions, which lower the convulsion threshold. There have also been rare post-market reports of seizures following administration of sumatriptan succinate in patients without risk factors or previous history of seizures (see ADVERSE REACTIONS, Post Market Adverse Drug Reactions, Nervous System Disorders).

Selective Serotonin Reuptake Inhibitors (SSRIs)/Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) and Serotonin Syndrome: Cases of life threatening serotonin syndrome have been reported during combined use of selective serotonin reuptake inhibitors (SSRIs)/serotonin norepinephrine reuptake inhibitors (SNRIs) and triptans. If concomitant treatment with sumatriptan succinate and SSRIs (e.g. fluoxetine, paroxetine, sertraline) or SNRIs (e.g. venlafaxine) is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases. Serotonin syndrome symptoms may include mental status changes (e.g. agitation, hallucinations, coma), autonomic instability (e.g. tachycardia, labile blood pressure, and hyperthermia), neuromuscular aberrations (e.g. hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g. nausea, vomiting, diarrhea) (see DRUG INTERACTIONS,
SSRIs/SNRIs).

Ophthalmologic

Binding to Melanin Containing Tissues: In rats treated with a single subcutaneous dose (0.5 mg/kg) or oral dose (2 mg/kg) of radiolabeled sumatriptan, the elimination half life of radioactivity from the eye was 15 and 23 days, respectively, suggesting that sumatriptan and/or its metabolites bind to the melanin of the eye. Because there could be an accumulation in melanin rich tissues over time, this raises the possibility that sumatriptan could cause toxicity in these tissues after extended use. However, no effects on the retina related to treatment with sumatriptan were noted in any of the oral or subcutaneous toxicity studies. Although no systematic monitoring of ophthalmologic function was undertaken in clinical trials, and no specific recommendations for ophthalmologic monitoring are offered, prescribers should be aware of the possibility of long term ophthalmologic effects.

Special Populations

Pregnant Women:
Reproduction studies, performed in rats, have not revealed any evidence of impaired fertility, teratogenicity, or postnatal development due to sumatriptan succinate. Reproduction studies, performed in rabbits by the oral route, have shown increased incidence of variations in cervico-thoracic blood vessel configuration in the fetuses. These effects were only seen at the highest dose tested, which affected weight gain in the dams, and at which blood levels were in excess of 50 times those seen in humans after therapeutic doses. A direct association with sumatriptan succinate treatment is considered unlikely but cannot be excluded.

Post marketing data from multiple prospective pregnancy registries have documented the pregnancy outcomes in approximately 1,100 women exposed to sumatriptan. At this time there is insufficient information to draw conclusions. Therefore, use of Taro-Sumatriptan is not recommended in pregnancy and it should be used only if the potential benefit to the mother justifies the potential risk to the fetus.

In a rat fertility study, oral doses of sumatriptan succinate resulting in plasma levels approximately 150 times those seen in humans after a 6 mg subcutaneous dose and approximately 200 times those seen in humans after a 100 mg oral dose were associated with a reduction in the success of insemination. This effect did not occur during a subcutaneous study where maximum plasma levels achieved approximately 100 times those in humans by the subcutaneous route and approximately 150 times those in humans by the oral route.

Nursing Women:
Sumatriptan is excreted in human breast milk. Therefore, caution is advised when administering Taro-Sumatriptan to nursing women. Infant exposure can be minimized by avoiding breast feeding for 24 hours after treatment.

Pediatrics (< 18 years of age):
The safety and efficacy of sumatriptan succinate in children has not been established and its use in this age group is not recommended.
Geriatrics (> 65 years of age):
Experience of the use of sumatriptan succinate in patients aged over 65 years is limited. Therefore the use of Taro-Sumatriptan in patients over 65 years is not recommended.

Hepatic Impairment:
The effect of hepatic impairment on the efficacy and safety of sumatriptan succinate has not been evaluated.

The pharmacokinetic parameters of 6 mg subcutaneous sumatriptan do not differ statistically between normal volunteers and moderately hepatically impaired subjects. However, sumatriptan should not be administered to patients with severe hepatic impairment (see CONTRAINDICATIONS and DOSAGE AND ADMINISTRATION).

Renal:
The effects of renal impairment on the efficacy and safety of Sumatriptan Succinate have not been evaluated. Therefore, Taro-Sumatriptan is not recommended in this patient population.

Monitoring and Laboratory Tests
No specific laboratory tests are recommended for monitoring patients prior to and/or after treatment with Taro-Sumatriptan.

ADVERSE REACTIONS

Serious cardiac events, including some that have been fatal, have occurred following the use of 5-HT₁ agonists. These events are extremely rare and most have been reported in patients with risk factors predictive of CAD. Events reported have included coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia and ventricular fibrillation (see CONTRAINDICATIONS, and WARNINGS and PRECAUTIONS).

Clinical Trial Adverse Drug Reactions

Because clinical trials are conducted under very specific conditions the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse drug reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

Experience in Controlled Clinical Trials with Sumatriptan Succinate

Typical 5-HT₁ Agonist Adverse Reactions: As with other 5-HT₁ agonists, sumatriptan succinate has been associated with sensations of heaviness, pressure, tightness or pain which may be intense. These may occur in any part of the body including the chest, throat, neck, jaw and upper limb.

Acute Safety: In placebo-controlled migraine trials, 7,668 patients received at least one dose of sumatriptan succinate (1,432 subcutaneous). The following table lists adverse events occurring in these trials at an incidence of 1% or more and that occurred at a higher incidence than in placebo.
Table 1: Treatment-Emergent Adverse Events in Subcutaneous Placebo-Controlled Clinical Trials Reported by at Least 1% of Patients with Migraine.

<table>
<thead>
<tr>
<th>Symptom Category</th>
<th>Placebo</th>
<th>Sumatriptan succinate 6 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>615</td>
<td>1432</td>
</tr>
<tr>
<td>Number of Migraine Attacks Treated</td>
<td>742</td>
<td>2540</td>
</tr>
<tr>
<td>Symptoms of Potentially Cardiac Origin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Chest Sensations*</td>
<td>1.6%</td>
<td>5.7%</td>
</tr>
<tr>
<td>- Neck/Throat/Jaw Sensations*</td>
<td>1.3%</td>
<td>12.0%</td>
</tr>
<tr>
<td>- Upper Limb Sensations*</td>
<td>2.0%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Head/Face Sensations *</td>
<td>3.7%</td>
<td>16.6%</td>
</tr>
<tr>
<td>- Dizziness</td>
<td>3.7%</td>
<td>7.9%</td>
</tr>
<tr>
<td>- Headache</td>
<td>0.7%</td>
<td>3.4%</td>
</tr>
<tr>
<td>- Drowsiness</td>
<td>1.8%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nausea</td>
<td>5.9%</td>
<td>9.4%</td>
</tr>
<tr>
<td>- Hyposalivation</td>
<td>2.8%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Muscle Atrophy Weakness & Tiredness</td>
<td>NR</td>
<td>1.7%</td>
</tr>
<tr>
<td>Ear/ Nose and Throat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Throat & Tonsil Symptoms</td>
<td>0.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Breathing Disorders</td>
<td>0.8%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Non-Site Specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sensations * (body region unspecified)</td>
<td>15.9%</td>
<td>39.0%</td>
</tr>
<tr>
<td>- Injection Site Reactions**</td>
<td>10.4%</td>
<td>24.7%</td>
</tr>
<tr>
<td>- Limb Sensations *</td>
<td>1.5%</td>
<td>6.0%</td>
</tr>
<tr>
<td>- Malaise/Fatigue</td>
<td>2.3%</td>
<td>4.7%</td>
</tr>
<tr>
<td>- Sweating</td>
<td>1.1%</td>
<td>1.7%</td>
</tr>
<tr>
<td>- Trunk Symptoms *</td>
<td>0.5%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

* The term “sensations” encompasses adverse events described as pain & discomfort, pressure, heaviness, constriction, tightness, heat/burning or cold sensation, paresthesia, hypoesthesia, numbness, flushing and strange sensations.
** NR = Not Reported
** Includes transient injection site pain, stinging/burning, swelling, erythema, bruising and bleeding.

Sumatriptan succinate is generally well tolerated. Most of the events were transient in nature and resolved within 45 minutes of subcutaneous administration.

Other Events Observed During Clinical Trials
Minor disturbances of liver function tests have occasionally been observed with sumatriptan treatment. There is no evidence that clinically significant abnormalities occurred more frequently with sumatriptan than with placebo.

Dyspnea has commonly been observed following sumatriptan treatment.

Post-Market Adverse Drug Reactions
The following section enumerates potentially important adverse events that have occurred in
clinical practice and that have been reported spontaneously to various surveillance systems. The events enumerated represent reports arising from both domestic and nondomestic use of sumatriptan. These events do not include those already listed in the ADVERSE REACTIONS section above. Because the reports cite events reported spontaneously from worldwide postmarketing experience, the frequency of such events and the role of sumatriptan in their causation cannot be reliably determined.

Cardiac Disorders: Bradycardia, tachycardia, palpitations, cardiac arrhythmias, transient ischaemic ECG changes, coronary artery vasospasm, angina, myocardial infarction (see CONTRAINDICATIONS, and WARNINGS and PRECAUTIONS).

Ophthalmologic Disorders: Patients treated with sumatriptan succinate, rarely exhibit visual disorders like flickering, and diplopia. Additionally, cases of reduced vision have been observed. Very rarely, both transient and permanent loss of vision have occurred. These occurrences have included reports of retinal vascular occlusion, ocular venous thrombosis, vasospasm of the eye and ischemic optic neuropathy. Visual disorders may also occur during a migraine attack itself.

Gastrointestinal Disorders: Colonic ischemia (see WARNINGS and PRECAUTIONS, Cardiovascular, Other Vasospasm Related Events).

Immune System Disorders: Hypersensitivity reactions ranging from cutaneous hypersensitivity to anaphylaxis (see WARNINGS and PRECAUTIONS, Immune).

Nervous System Disorders: Seizures, although some have occurred in patients with either a history of seizures or concurrent conditions predisposing to seizures there are also reports in patients where no such predisposing factors are apparent (see WARNINGS and PRECAUTIONS, Neurologic).

There have been very rare reports of dystonia and related extrapyramidal disorders, such as choreoathetoid movement, akathisia, parkinsonism and akinesia following subcutaneous treatments of sumatriptan succinate. Patients with previous history of drug related dystonia and patients taking medications recognized to be associated with movement disorders such as SSRIs, may be at higher risk.

Nystagmus, scotoma.

Vascular Disorders: Hypotension, Raynaud’s phenomenon, peripheral vascular ischemia (see CONTRAINDICATIONS, and WARNINGS AND PRECAUTIONS, Increases in Blood Pressure; Cardiovascular; and Other Vasospasm Related Events).

DRUG INTERACTIONS

Drug-Drug Interactions
Single-dose pharmacokinetic drug interaction studies have not shown evidence of interactions with propranolol, flunarizine, pizotifen or alcohol. Multiple dose interaction studies have not been performed.
Ergot-Containing Drugs: Ergot containing drugs have been reported to cause prolonged vasospastic reactions. Because there is a theoretical basis for these effects being additive, ergot-containing or ergot-type medications (like dihydroergotamine or methysergide) are contraindicated within 24 hours of Taro-Sumatriptan administration (see CONTRAINDICATIONS).

MAO Inhibitors: In studies conducted in a limited number of patients, MAO inhibitors reduce sumatriptan clearance, significantly increasing systemic exposure. Therefore, the use of Taro-Sumatriptan in patients receiving MAO inhibitors is contraindicated (see CONTRAINDICATIONS, and ACTION AND CLINICAL PHARMACOLOGY).

Selective Serotonin Reuptake Inhibitors (SSRIs)/ Serotonin Norepinephrine Reuptake Inhibitors (SNRIs): Cases of life-threatening serotonin syndrome have been reported during combined use of selective serotonin reuptake inhibitors (SSRIs) or serotonin norepinephrine reuptake inhibitors (SNRIs) and triptans (see WARNINGS AND PRECAUTIONS).

Other 5-HT1 agonists: The administration of sumatriptan succinate with other 5-HT1 agonists has not been evaluated in migraine patients. As an increased risk of coronary vasospasm is a theoretical possibility with coadministration of 5-HT1 agonists, use of these drugs within 24 hours of each other is contraindicated.

Drug-Laboratory Interactions
Sumatriptan succinate is not known to interfere with commonly employed clinical laboratory tests.

DOSAGE AND ADMINISTRATION

Dosing Considerations

Adults:
Taro-Sumatriptan (sumatriptan succinate), is indicated for the acute treatment of migraine headache with or without aura. Sumatriptan should not be used prophylactically. The safety of treating an average of more than four headaches in a 30 day period has not been established. The recommended dose of Taro-Sumatriptan should not be exceeded.

Significant relief begins about 10-15 minutes following subcutaneous injection.

In addition to relieving the pain of migraine, sumatriptan has also been shown to be effective in relieving associated symptoms of migraine (nausea, vomiting, phonophobia, photophobia). Sumatriptan is equally effective when administered at any stage of a migraine attack. Long term (12-24 months) clinical studies with maximum recommended doses of sumatriptan indicate that there is no evidence of the development of tachyphylaxis, or medication induced (rebound) headache.

Geriatrics: No differences have been observed between the pharmacokinetic parameters in
healthy elderly volunteers compared with younger volunteers (less than 65 years old).

Pediatrics (patients under 18 years of age): The safety and efficacy of Sumatriptan Succinate in pediatrics has not been established and its use in this age group is not recommended. (See WARNINGS and PRECAUTIONS, Special populations).

Recommended Dose and Dosage Adjustment

Taro-Sumatriptan should be injected subcutaneously (on the outside of the thigh or in the upper arm) using an autoinjector. Patients should be advised to observe strictly the instruction leaflet for Taro-Sumatriptan, especially regarding the use of auto-injector.

The recommended adult dose of sumatriptan is a single 6 mg subcutaneous injection. The recommended dose should not be exceeded.

Clinical trials have shown that approximately 70–72 % of patients have headache relief within one hour after a single subcutaneous injection. This number increases to 82% by 2 hours.

If the migraine headache returns, or if a patient has a partial response to the initial dose, the dose may be repeated after 1 hour. Not more than 12 mg (two 6 mg injections) should be taken in any 24 hour period.

If a patient does not respond to the first dose of Taro-Sumatriptan, a second dose should not be taken for the same attack, as it is unlikely to be of clinical benefit. Taro-Sumatriptan may be taken for subsequent attacks.

Administration during migraine aura prior to other symptoms occurring may not prevent the development of a headache.

Special Populations

Adults with Mild to Moderate Hepatic Impairment

The pharmacokinetic parameters of 6 mg subcutaneous sumatriptan do not differ statistically between normal volunteers and moderately hepatically impaired subjects (see WARNINGS AND PRECAUTIONS, Special Populations, Hepatic Impairment). No dosage adjustment is necessary for patients with mild to moderate hepatic impairment.

Adults with Severe Hepatic Impairment

Sumatriptan is contraindicated in patients with severe hepatic impairment (see CONTRAINDICATIONS).

Administration

Patients should be instructed to follow the ‘HOW TO USE THE AUTO-INJECTOR’ leaflet provided with Taro-Sumatriptan. The auto-injector will inject a dose of sumatriptan succinate just below the skin quickly and without pain. The injection must NOT be given in any other way than the way shown.

DO NOT inject Taro-Sumatriptan into a vein.
OVERDOSAGE

There have been some reports of overdosage with sumatriptan succinate. Patients have received single injections of up to 12 mg subcutaneously without significant adverse effects. Doses up to 16 mg subcutaneously were not associated with side effects other than those mentioned.

If overdose with sumatriptan occurs, the patient should be monitored and standard supportive treatment applied as required. Toxicokinetic data are not available.

The effect of hemodialysis or peritoneal dialysis on the serum concentration of sumatriptan is unknown.

For management of a suspected drug overdose, contact your regional Poison Control Centre.

ACTION AND CLINICAL PHARMACOLOGY

Mechanism of Action

Sumatriptan succinate has been shown to be effective in relieving migraine headache. Sumatriptan is an agonist for a vascular 5-hydroxytryptamine_{1D} (5-HT\textsubscript{1D}) receptor subtype (a member of the 5-HT\textsubscript{1} family), and has only weak affinity for 5-HT\textsubscript{1A} receptors and no significant activity (as measured using standard radioligand binding assays) or pharmacological activity at 5-HT\textsubscript{2}, 5-HT\textsubscript{3}, 5-HT\textsubscript{4}, 5-HT\textsubscript{5A}, or 5-HT\textsubscript{7} receptor subtypes, or at alpha\textsubscript{1A}, alpha\textsubscript{2A}, or beta-adrenergic; dopamine\textsubscript{1} or dopamine\textsubscript{2}; muscarinic; or benzodiazepine receptors.

The therapeutic activity of sumatriptan succinate in migraine is generally attributed to its agonist activity at 5-HT\textsubscript{1B}/5-HT\textsubscript{1D} receptors. Two current theories have been proposed to explain the efficacy of 5-HT\textsubscript{1} receptor agonists in migraine. One theory suggests that activation of 5-HT\textsubscript{1} receptors located on intracranial blood vessels, including those on the arteriovenous anastomoses, leads to vasoconstriction, which is believed to be correlated with the relief of migraine headache. The other hypothesis suggests that activation of 5-HT\textsubscript{1} receptors on perivascular fibres of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. These theories are not mutually exclusive.

Experimental data from animal studies show that sumatriptan also activates 5-HT\textsubscript{1} receptors on peripheral terminals of the trigeminal nerve which innervates cranial blood vessels. This causes the inhibition of neuropeptide release. It is thought that such an action may contribute to the anti-migraine action of sumatriptan in humans.

Cardiovascular Effects:

In vitro studies in human isolated epicardial coronary arteries suggest that the predominant contractile effect of 5-HT is mediated via 5-HT\textsubscript{2} receptors. However, 5-HT\textsubscript{1} receptors also contribute to some degree to the contractile effect seen. Transient increases in systolic and
diastolic blood pressure (up to 20 mmHg) of rapid onset (within minutes), have occurred after intravenous administration of up to 64 µg/kg (3.2 mg for 50 kg subject) to healthy volunteers. These changes were not dose related and returned to normal within 10-15 minutes.

Pharmacodynamics

Significant relief begins about 10-15 minutes following subcutaneous injection.

Pharmacokinetics

Pharmacokinetic parameters following subcutaneous administration are shown in Table 2. Inter-patient and intra-patient variability was noted in most pharmacokinetic parameters assessed.

Table 2: Summary of Sumatriptan Pharmacokinetic Parameters Following Subcutaneous Administration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>6 mg Single Dose (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioavailability</td>
<td>96%</td>
</tr>
<tr>
<td>C$_{\text{max}}$</td>
<td>72 ng/mL</td>
</tr>
<tr>
<td>T$_{\text{max}}$</td>
<td>15 min</td>
</tr>
<tr>
<td>T$_{\frac{1}{2}}$</td>
<td>2 h (1.7-2.3 h)</td>
</tr>
<tr>
<td>Protein Binding</td>
<td>14-21%</td>
</tr>
<tr>
<td>Volume of Distribution</td>
<td>170 L</td>
</tr>
<tr>
<td>Total Plasma Clearance</td>
<td>1160 mL/min</td>
</tr>
<tr>
<td>Renal Plasma Clearance</td>
<td>260 mL/min</td>
</tr>
</tbody>
</table>

Absorption/Metabolism: Sumatriptan is rapidly absorbed after subcutaneous administration.

In vitro studies with human microsomes suggest that sumatriptan is metabolized by monoamine oxidase (MAO), predominantly the A isoenzyme. In studies conducted in a limited number of patients, MAO inhibitors reduce sumatriptan clearance, significantly increasing systemic exposure.

Excretion: Non-renal clearance of sumatriptan accounts for about 80% of the total clearance. The major metabolite, the indole acetic acid analogue of sumatriptan, is mainly excreted in the urine where it is present as a free acid (35%) and the glucuronide conjugate (11%). It has no known 5-HT$_1$ or 5-HT$_2$ activity. Minor metabolites have not been identified.

Special Populations and Conditions

Geriatrics: No differences have been observed between the pharmacokinetic parameters in healthy elderly volunteers and those younger volunteers (less than 65 years old).

STORAGE AND STABILITY

Taro-Sumatriptan (sumatriptan succinate) should be stored at controlled room temperature between 15°C and 30°C. Protect from light.
DOSAGE FORMS, COMPOSITION AND PACKAGING

Dosage Form: Subcutaneous injection

Composition: Sumatriptan succinate (6 mg sumatriptan), sodium chloride and water for injection. The needle shield contains dry natural rubber (a latex derivative).

Packaging: Two prefilled syringes of 6 mg/0.5 mL each, and each with a disposable auto-injector device, packed in a carton.
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substance
Proper name: Sumatriptan succinate
Chemical name: 3-[2-(dimethylamino) ethyl]-N-methyl-indole-5-
methanesulphonamide succinate (1:1)
Molecular formula: C_{14}H_{21}N_{3}O_{2}S \cdot C_{4}H_{6}O_{4}
Molecular mass: 413.5
Structural formula:

![Structural formula of sumatriptan succinate]

Physicochemical properties:

Physical Characteristics: White to off-white powder with a melting point between 164.6°C-165.5°C.

Solubility:
In water (4°C) = 54 mg/mL
In water (20°C) = 101 mg/mL
In saline (0.9% w/v, 4°C) = 62 mg/mL
In saline (0.9% w/v, 20°C) = 109 mg/mL

pH and pka: The pH of a 1% w/v solution of sumatriptan succinate in water is approximately 4.9.

pK_{a1} (succinic acid) = 4.21, 5.67
pK_{a2} (3° amino group) = 9.63
pK_{a3} (sulphonamide group) >12.

Partition Coefficient (between n-octanol and water): log P= 1.07 at a pH of 10.7.
CLINICAL TRIALS

Migraine:
The efficacy of sumatriptan succinate was established in three controlled trials for the treatment of migraine. Patients enrolled and treated in these studies were predominantly female (88%), Caucasian (93%) and with a mean age of 39 years (range of 18 to 75 years). Patients with headache severity of at least grade 2 that was not improving were selected as subjects. The response of one headache attack was studied over a period of at least 2 hours. Studies 2 and 3 allowed for an optimal second dose after one hour. Headache relief at one and two hours was statistically significantly greater for sumatriptan succinate injection when compared to placebo (Table 3).

Table 3: Percentage of Patients with Headache Relief (grade 0/1) at 1-and 2-Hours Post Subcutaneous Injection for the Treatment of Migraine

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo† (%)</th>
<th>6 mg§§ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour 24</td>
<td>21</td>
<td>73*</td>
</tr>
<tr>
<td>(n=62)</td>
<td>(n=30)</td>
<td></td>
</tr>
<tr>
<td>2-hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour 18</td>
<td>31</td>
<td>70*</td>
</tr>
<tr>
<td>(n=190)</td>
<td>(n=384)</td>
<td></td>
</tr>
<tr>
<td>2-hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour 26</td>
<td>39</td>
<td>70*</td>
</tr>
<tr>
<td>(n=180)</td>
<td>(n=350)</td>
<td></td>
</tr>
<tr>
<td>2-hour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Headache relief is defined as a reduction in headache severity from grade 3 or 2 (severe or moderate) to grade 1 or 0 (mild or no pain)*

§ Includes patients that may have received an additional placebo injection 1 hour after the initial injection.

§§ Includes patients that may have received an additional 6 mg of sumatriptan succinate injection 1 hour after the initial injection.

* p<0.05 versus placebo

For patients with migraine-associated nausea, photophobia and/or phonophobia at baseline, there was a decreased incidence of these symptoms following administration of sumatriptan succinate injection compared to placebo.

Menstrually-Associated Migraine:
A double-blind, placebo-controlled parallel group study evaluated the efficacy of the 6 mg sumatriptan succinate injection in the acute treatment of menstrual migraine with optional open follow-up treatment. A total of 226 patients, aged 18 to 50 years experiencing menstrual migraine (defined as migraine without aura occurring 3 to 5 days relative to the first day of menstruation), for at least 6 months prior to the study, were enrolled and treated. Up to two moderate to severe attacks could be treated.

Headache relief at 2 hours post first dose was achieved for a significantly greater proportion of patients treated with sumatriptan 6 mg subcutaneous injection than with placebo (Table 4).
Table 4: Percentage of Patients with Complete Headache Pain Relief\(^1\) at 1 and 2 Hours Post-Subcutaneous Injection for the Treatment of Menstrually-Associated Migraine

<table>
<thead>
<tr>
<th></th>
<th>Placebo (%)</th>
<th>6 mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hour</td>
<td>22</td>
<td>71*</td>
</tr>
<tr>
<td>2-hour</td>
<td>31 (n=88)</td>
<td>73* (n=73)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Placebo (%)</th>
<th>6 mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hour</td>
<td>22</td>
<td>71*</td>
</tr>
<tr>
<td>2-hour</td>
<td>31 (n=88)</td>
<td>73* (n=73)</td>
</tr>
</tbody>
</table>

1 Complete Headache Pain Relief is defined as grade 1 (mild pain) reduced to grade 0 (no pain)

* \(p<0.001\) vs. placebo

For migraine-associated symptoms, the results showed that there were significantly fewer patients experiencing nausea and photophobia and/or phonophobia in the sumatriptan group compared to placebo.

DETAILED PHARMACOLOGY

Animal Pharmacodynamics

The action of sumatriptan has been studied in a range of isolated preparations in vitro, all known to contain different 5-HT receptor subtypes.

In Beagle dog isolated saphenous vein known to contain 5-HT\(_1\) receptors, sumatriptan had a mean EC\(_{50}\) of 302 nM, while 5-HT had an EC\(_{50}\) of 44 nM.

In cat isolated saphenous vein, sumatriptan (concentrations of up to 10 \(\mu\)M) had no activity on 5-HT\(_1\) receptors, suggesting that sumatriptan is a highly selective agonist at some, but not all, 5-HT\(_1\) receptors. The contrasting action of sumatriptan at these receptor sites in the Beagle dog and cat isolated saphenous veins provides evidence that 5-HT\(_1\) receptors are heterogeneous.

Sumatriptan displayed virtually no activity at 5-HT\(_2\) receptors mediating contraction of the rabbit isolated aorta (concentrations up to 50 \(\mu\)M) and at 5-HT\(_3\) receptors mediating depolarization of the rat isolated vagus nerve (concentrations up to 100 \(\mu\)M).

The selectivity of sumatriptan was further confirmed by studies in dog isolated saphenous vein, and in dog and primate isolated basilar artery. In these assays sumatriptan was resistant to the selective 5-HT\(_2\) and 5-HT\(_3\) receptor antagonists, ketanserin and MDL72222, respectively. Radioligand binding studies provide yet additional support for the high degree of specificity of sumatriptan. Sumatriptan was shown to have a high affinity for some 5-HT\(_1\) binding sites, notably the 5-HT\(_{1D}\) subtype, and no significant affinity for other neurotransmitter binding sites such as, 5-HT\(_{1A}\), 5-HT\(_{1C}\), 5-HT\(_2\), 5-HT\(_3\), alpha\(_1\), alpha\(_2\), beta\(_1\), dopamine D\(_1\) and D\(_2\), muscarinic and benzodiazepine receptors.

\(^1\) molar concentrations required to produce 50% of the maximum response
In the human isolated basilar artery, methiothepin specifically and equally antagonised the contractile effects of both 5-HT and sumatriptan, suggesting that sumatriptan and 5-HT contract this artery by activating the same receptor type. This receptor appears to be identical to the 5-HT$_1$ receptor which mediates contraction of the dog isolated saphenous vein and cerebral blood vessels in both the dog and primate.

Sumatriptan selectively reduced the extravasation of plasma proteins in the duramater of rats and guinea pigs, in response to trigeminal nerve stimulation.

Although an inhibitory effect on neurotransmitter release from trigeminal nerve endings is implicated, the action of sumatriptan would still predominantly involve a direct vasoconstrictive action on dural blood vessels, which could be expected to inhibit extravasation. In fact, such a vasoconstrictive action during a migraine attack could also increase the threshold for activating perivascular nerve afferents by reducing pressure on edematous pain-sensitive vessels within the cranium.

The major metabolite of sumatriptan in humans and other animal species, GR49336, has no pharmacological activity at 5-HT$_1$ receptors or other vascular 5-HT receptor subtypes.

Sumatriptan (1-1000 µg/kg, iv) produced a selective long-lasting and dose-dependent decrease in carotid arterial blood flow, in vivo (anaesthetized Beagles), with little or no change in arterial blood pressure. The dose of sumatriptan producing 50% of its maximum vasoconstrictor action was 39 ± 8 µg/kg, iv. Maximal vasoconstrictor responses were achieved with intravenous doses between 300-1000 µg/kg.

The vasoconstrictor action of sumatriptan in the carotid arterial circulation of anaesthetised Beagles is mediated by the activation of 5-HT$_1$ receptors since it was antagonised by methiothepin, a selective 5-HT$_1$ receptor blocker.

Sumatriptan (30-1000 µg/kg, iv) produced a dose-dependent reduction in the proportion of cardiac output passing through arteriovenous anastomoses (AVAs) in anaesthetized cats.

At doses up to 1000 µg/kg iv, sumatriptan had little effect upon vascular resistance in a variety of other vascular beds. In contrast, the administration of ergotamine (30 µg/kg) caused marked increases in vasoconstriction in most vascular beds examined.

Sumatriptan did not modify efferent vagal activity by either a central action, or by interference with cholinergic neurotransmission from vagal nerve endings in the myocardium of anaesthetized cats.

It had no antinociceptive effects in rodents, and is, therefore, unlikely that its effectiveness in alleviating migraine headache is due to a generalized analgesic action.

In conscious monkeys, at cumulative doses of up to 1000 µg/kg, there were no significant effects on arterial blood pressure, heart rate, ECG or respiratory rate that could be attributed to the intravenous administration of sumatriptan.
Sumatriptan up to 1 mg/kg had little or no effect upon either pulmonary artery or esophageal pressure in Beagle dogs. There was also little or no effect upon total peripheral resistance, and only a slight increase in cardiac output and stroke volume.

In the rat, sumatriptan (1 and 10 mg/kg, ip) caused a dose-related increase in the rate of gastric emptying, the magnitude of this effect being comparable with that obtained with metoclopramide at doses of 5-20 mg/kg, ip.

Animal Pharmacokinetics

Absorption of radiolabelled drug-related material following single-dose oral administration of sumatriptan was both rapid and extensive in mice, rats, rabbits and dogs. Oral bioavailabilities of 37% in rat (5 mg/kg), 23% in rabbit (5 mg/kg) and 58% in dog (1 mg/kg) indicate that first-pass metabolism is moderate to high in these species. In dogs, this was supported by low metabolic clearance relative to hepatic blood flow. Following intravenous administration, the parent compound was rapidly eliminated from the plasma of mice, rats and rabbits (t1/2 ≤ 1.2 h) and less rapidly in dogs (t1/2 = 2.1 h).

Active tubular secretion of sumatriptan occurred in the kidneys of rats and rabbits but not in the dog, where clearance was primarily metabolic.

The repeat-dose pharmacokinetics of sumatriptan in the mouse, rat, rabbit and dog were generally consistent with the single-dose data. Plasma levels attained in these species showed that sumatriptan concentrations were linearly-related to oral doses up to 160 mg/kg in mice, 200 mg/kg in rats (subcutaneous doses up to 25 mg/kg), 400 mg/kg in rabbits and 100 mg/kg in dogs (subcutaneous doses up to 24 mg/kg).

Following intranasal administration to the rat or dog, plasma concentrations of sumatriptan peaked at approximately 30 minutes; in the monkey it peaked at 15 minutes. A second peak was observed in some animals at 90-120 minutes suggesting absorption of a swallowed portion of the dose. The maximum concentrations of sumatriptan detected in plasma following oral or subcutaneous administration to dogs were 35-and 75-fold higher, respectively, than were measured in human plasma following standard therapeutic doses.

There was no evidence of accumulation or enzyme inhibition/induction in any of the species studied.

Radioactive drug-related material was widely distributed throughout the body following both oral and intravenous administration of radiolabelled sumatriptan. Transfer into the central nervous system was limited.

Drug-related material was cleared rapidly from all tissues with the exception of the eye in which it appeared to be bound to the melanin in the uveal tract.

The binding of sumatriptan to plasma proteins over the concentration range 10 to 1000 ng/mL was low, 21% or less, in all species studied. Erythrocyte-associated ¹⁴C-GR43175 was reversibly bound.
Placental transfer studies in rat and rabbit showed that in both species the fetuses were exposed to low levels of drug-related material. Sumatriptan and drug-related material were secreted into the milk of lactating rats and were present at higher concentrations than those seen in maternal plasma.

Following oral administration to the rabbit and dog, and intravenous administration to the dog, and intranasal administration to the rat and dog, the indole acetic acid derivative GR49336 was the major metabolite formed.

This metabolite was also a major component in the urine of rats after both oral and intravenous and intranasal administration and in rabbits after intravenous administration, indicating that oxidative deamination is the major metabolic pathway in all animal species studied.

Metabolism of the methylaminosulphonylmethyl side chain resulting in the formation of an N-demethylated derivative of sumatriptan was apparent in the urine of the mouse, rat, and rabbit but not in the dog.

The major route of excretion was via the urine in the mouse, rabbit and dog following oral and intravenous administration and in the rat following intravenous dosing only.

Following oral administration to rats, the major route of excretion of drug-related material was via the feces.

Human Pharmacodynamics
Administration of subcutaneous sumatriptan 6 mg twice daily for 5 days to healthy subjects caused slight increases in mean systolic and diastolic blood pressures (6-8 mmHg) while heart rate decreased slightly (1-7 bpm).

Vasopressor effects were also evident following oral administration, with mean peak increases being somewhat smaller and of slower onset than after parenteral administration. A single oral dose of 200 mg sumatriptan caused significant increases in both systolic and diastolic blood pressures (16 mmHg and 5 mmHg, respectively); however, further dosing (200 mg three times daily for a further 7 days) did not cause any additional vasopressor effects.

In hypertensive patients with common or classical migraine, small, transient increases in both systolic and diastolic blood pressure (maximum mean increase: 6/6 mmHg) occurred shortly after subcutaneous doses of 6 mg, but resolved within 60 minutes. A dose-related increase of 14 mmHg in systolic blood pressure was found in elderly patients given 200 mg oral sumatriptan.

Sumatriptan had no effect on cardiac function in migraine patients when given as a 64 µg/kg intravenous infusion. Exercise tests were performed after each infusion showing that sumatriptan had no effect on left ventricular ejection fraction either at rest or after exercise, and no differences were noted between placebo and sumatriptan.
TOXICOLOGY

Acute Toxicity
Administration of single oral doses of sumatriptan up to 2000 mg/kg in rats and 1200 mg/kg in mice was well tolerated. Dogs also survived high oral doses of sumatriptan (500 mg/kg).

In subcutaneous studies, a dose of 2 mg/kg to rats was lethal. Dogs received subcutaneous doses of 20 and 100 mg/kg which were non-lethal. The reactions to treatment were similar irrespective of species or route of administration. Apart from local damage at the injection sites, there were no macroscopic or microscopic changes noted in any tissue (Table 5).

Table 5: Results from Acute Toxicity (LD50) Studies in Mice, Rats and Dogs

<table>
<thead>
<tr>
<th>Species/Strain</th>
<th>Route</th>
<th>Approx. LD50 (mg/kg)</th>
<th>MNLD (mg/kg)</th>
<th>MLD (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse: CRH</td>
<td>Oral</td>
<td>1500</td>
<td>≥1200</td>
<td>> 1200</td>
</tr>
<tr>
<td>Mouse: CRH</td>
<td>Intravenous</td>
<td>>15, <20</td>
<td>≥ 15</td>
<td>≤ 20</td>
</tr>
<tr>
<td>Rat: RH</td>
<td>Intravenous</td>
<td>> 40</td>
<td>> 20</td>
<td>≤ 32</td>
</tr>
<tr>
<td>Rat: SD</td>
<td>Subcutaneous</td>
<td>1200 (M) 1400 (F)</td>
<td>≥ 500</td>
<td>≤ 1000</td>
</tr>
<tr>
<td>Dog: Beagle</td>
<td>Oral</td>
<td>> 500</td>
<td>≥ 500</td>
<td>> 500</td>
</tr>
<tr>
<td>Dog: Beagle</td>
<td>Subcutaneous</td>
<td>> 100</td>
<td>≥ 100</td>
<td>> 100</td>
</tr>
</tbody>
</table>

Key: MNLD: Maximum non-lethal dose
MLD: Minimum Lethal dose
(M): Male
(F): Female

Long Term Studies
Subacute toxicity studies were conducted for periods up to 6 weeks in RH rats. Sumatriptan was given orally (by gavage) at doses up to 500 mg/kg/day and given subcutaneously at doses up to 81 mg/kg/day.

Clinical signs observed following oral administration were generally minor and transient in nature and occurred predominantly at 500 mg/kg/day. These signs included post-dosing erythema, mydriasis, ataxia, salivation, subdued temperament, postural changes and moist eyes.

Reactions were similar in subcutaneous studies in rats receiving doses of sumatriptan up to 81 mg/kg/day. Local irritation at the injection site was accompanied by a marked inflammatory response, local necrosis, hemorrhage, infiltration, granulation tissue formation and local
muscle degeneration and repair. These reactions were dose dependent.

In dogs administered oral sumatriptan (1-100 mg/kg/day) in studies up to 6 weeks, clinical signs observed included head shaking, scratching, salivation, trembling, agitated behaviour, vocalization, mydriasis and vasodilation. These effects were dose-related. The dogs also developed tachycardia lasting for several hours, often followed by bradycardia. No changes in ECG were detected.

Subcutaneous administration of sumatriptan (1-16 mg/kg/day) up to 6 weeks in dogs caused injection site reactions similar to the reactions described in rats.

Chronic toxicity studies were carried out for 24 weeks and 72 weeks in rats and 26 and 60 weeks in dogs.

In both the 24 week and 72 week studies in rats receiving sumatriptan doses of 5, 50 and 500 mg/kg/day orally, clinical signs were similar to those seen in previous oral toxicity studies in rats and were mild and transient in nature.

Animals of each sex receiving 50 and 500 mg/kg/day gained weight more rapidly than controls. This was considered to be related to increased food consumption.

Small reductions in cholesterol levels were frequently noted at 500 mg/kg/day. As well, dose related increases in urine specific gravity were seen throughout the 72 week study at 500 mg/kg/day. These increases were of no toxicological significance. Cessation of treatment showed good evidence of recovery.

There were no macroscopic or histological treatment related findings in any of the organs in either study.

A long term repeat dose subcutaneous toxicity study of 24 weeks duration was performed in RH rats receiving sumatriptan at doses of 1, 8 and 64 mg/kg/day.

There was occasional temporary appearance of masses at the injection sites in the animals receiving the highest dose of sumatriptan. Evidence of injection site injury was also apparent in the recovery animals. Rats in this group showed signs of neutrophilia and lymphocytosis.

Injection site reactions in animals in the high dose group were similar to those reported during previous toxicity studies.

Studies of 26 and 60 weeks at oral doses of 2, 10 and 50 mg/kg/day were performed in Beagle dogs.

A moderate increase in heart rate was observed in the intermediate (10 mg/kg/day) dose group (60 week study) and in the high (50 mg/kg/day) dose group (26 and 60 week studies). The increase lasted for up to 7 hours after dosing and a dose related decrease in heart rate was evident 24 hours after dosing, at 10 and 50 mg/kg/day. There were no changes in rhythm. Animals of either sex receiving 50 mg/kg/day showed slight reductions in body weight gain in
both studies.

In the 60 week study, a dose related incidence of transient changes was noted on the surface of the cornea. However, these changes were not considered to be treatment related as evidenced by microscopic examination.

Organ weight analyses revealed significantly increased heart weights in all groups of treated females in the 26 week study. There were no treatment-related effects on organ weights in the 60 week study.

A long term repeat dose subcutaneous study of 24 weeks duration was performed in the Beagle dog at doses of 1, 3.5 and 12 mg/kg/day. Injection site reactions included edema, marked hemorrhage, moderate/chronic inflammation and minimal arteritis. Some minimal injection site changes were also seen in treated animals after a 5 week recovery period.

Transient dose-related changes in the precorneal tear film of treated dogs were observed. There was, however, no histological evidence of damage to the cornea or surrounding tissues.

Analysis of hematological parameters revealed a slight lowering of some red cell parameters in the high dose (12 mg/kg/day) group. No reticulocyte response was evident. Although no effect on total leucocyte count was observed, lymphocyte numbers were generally lower and neutrophils were generally slightly higher at this dose level. The only change observed during the recovery period was a statistically significantly reduced hemoglobin level in the males.

Carcinogenicity

The carcinogenic potential of sumatriptan was evaluated in a 78-week oncogenicity study conducted in mice given oral doses of 10, 60 and 160 mg (base)/kg/day. There were two groups (102 mice each) given the vehicle only.

Tumours were found in more than half of the male mice and in less than half of the females across all groups. There was a statistically significant increase in the incidence of non-fatal hemolymphoreticular tumours observed in males at the dose of 60 mg/kg/day group only when compared with controls. Since there was no dose relationship, this increase was considered to be of no toxicological significance. There was no evidence that administration of sumatriptan at any of the dose levels caused any alteration in the incidence of any specific tumours or non-neoplastic lesions.

A 104-week study was conducted in the Sprague-Dawley rat given oral doses of 10, 60 and 360 mg (base)/kg/day. Two control groups of 100 animals each were given vehicle control only.

There was a significant increase in the incidence of non-fatal adrenal medullary tumours (benign and malignant pheochromocytomas) in males given doses of 10 and 60 mg/kg/day and in males dosed at 360 mg/kg/day. A significant increase in the incidence of benign testicular interstitial (Leydig) cell tumours occurred when compared with controls. Adrenal medullary tumours also increased significantly in females dosed at 60 and 360 mg/kg/day. Comparison of both types of tumours with historical control data indicated that the observations were within the expected background range for the species and that long-term
exposure to sumatriptan does not induce any treatment-related increases in the incidences of any tumours for the species tested.

Mutagenicity
Sumatriptan produced no detectable or reproducible mutagenic potential above that seen in controls, in studies conducted *in vitro* with mutant strains of Salmonella typhimurium, Escherichia coli, or Saccharomyces cerevisiae with or without a rat hepatic drug metabolizing enzyme system. In addition, no statistically significant clastogenic effects were seen *in vitro* using cultured human peripheral lymphocytes at a maximum dose of 1000 µg/mL in the presence of the rat hepatic drug metabolism enzyme system or *in vivo* in a rat micronucleus test, at a maximum dosage of 1000 mg/kg.

Sumatriptan showed only weak cytotoxic activity at the highest concentration of 5000 µg/mL tested *in vitro* with V-79 mammalian cells.

Reproduction and Teratology
In organogenesis studies, oral doses of up to 500 mg/kg/day in the rat were without adverse effects upon fetal parameters measured, but an oral dose of 1000 mg/kg/day in the rat, proved toxic to both dams and embryos.

Two oral organogenesis studies were conducted in rabbits, one using daily oral doses of 5, 25 or 100 mg/kg/day and the other using 5, 15 or 50 mg/kg/day. Sumatriptan was administered from days 8-20 of pregnancy.

In the first study, there were no adverse effects at the two lower doses. At the highest dose (100 mg/kg), there was a severe decrease in maternal body weight gain indicating that this dose is maternally toxic. A non-significant increase in post-implantation intra-uterine death from 8.3% in the untreated control group to 21.2% in the high dose (background range in untreated control animals 1.7% - 15.2%) was observed. In addition there was an increased incidence of subtle variations in the position of certain blood vessels emanating from the aortic arch. In the untreated control these were present at 5.5% of fetuses (3 out of 10 litters affected). At the maternally toxic dose of 100 mg/kg, 23.1% of fetuses had these variations (4 out of 5 litters affected). This type of change is commonly found in untreated control animals (historical control incidence 17.5%; proportion of litters affected 44 out of 91), and does not compromise either health or survival.

In the second oral study, the findings were similar to those seen in the first study. There were no adverse effects at the two lower doses. At the highest dose (50 mg/kg), there was a severe decrease in maternal body weight gain. There were also various fetal effects ascribed to maternal toxicity. There was a slight reduction in mean fetal weight (37.7 g in control, 35.3 g at 50 mg/kg); small increases in the incidence of common skeletal variants (control incidence 8.8%; at 50 mg/kg 20.8%; background mean 6.2%; Background range 1.3% - 13.3%) and again an increased incidence of positional changes of certain aortic arch blood vessels; (control incidence 12.8%, 3 out of 20 litters affected; at 50 mg/kg 25%, 10 out of 14 litters affected).

Placental transfer studies in pregnant rabbits have shown that sumatriptan can cross the placental barrier in small amounts. After a 5 mg/kg oral dose, 71.2 ng sumatriptan per gram of fetus was detected. The blood levels at this dose were 172 - 269 ng/mL. At the maternally
Toxic dose of 50 mg/kg in rabbits, blood levels reached 3180-6750 ng/mL.

Organogenesis studies conducted using intravenous doses of up to 12.5 mg/kg/day in rats revealed fused ribs at a dose of 2.5 mg/kg/day and rudimentary tail and dilatation of the renal pelvis at a dose of 12.5 mg/kg/day. The treatment had no adverse effects on either the dams or the fetuses and the malformations were considered unrelated to treatment since they are known to occur spontaneously in the control groups of the rat strain employed.

Rabbits were also studied using intravenous doses of up to 8.0 mg/kg/day which revealed no teratological response. However, in the first study a statistically significant dose related increasing trend in prenatal mortality was seen due to apparent maternal toxicity. In the second study, using intravenous doses up to 2.0 mg/kg/day, no maternal toxicity or increased prenatal mortality were observed.

Fertility studies conducted in rats with oral doses of up to 500 mg/kg/day and subcutaneous doses of up to 60 mg/kg/day indicated that there were no adverse effects upon the reproductive performance of the treated, parental generation, or upon the growth and development of two successive untreated generations.

In peri- and postnatal studies conducted in rats given oral doses of up to 1000 mg/kg/day and subcutaneous doses of up to 81 mg/kg/day, no toxicological adverse effects that may have been relevant to the peri- and postnatal development of their offspring was seen. However, oral administration of 1000 mg/kg/day during periods of pregnancy and lactation resulted in a decrease in maternal and fetal body weight.

A comprehensive evaluation of the effects of sumatriptan on reproduction indicates that the compound is devoid of teratogenic potential in the rat. In addition, there were no adverse effects on fertility or postnatal development. In rabbit oral reproduction studies, there were increased incidences of variations in cervico-thoracic blood vessel configuration in the fetuses, but these were only seen at maternally toxic doses in which blood levels were in excess of 50 times those seen after therapeutic doses in humans. A direct association with sumatriptan treatment is considered unlikely but cannot be excluded. The relevance to humans is unknown.

Local Tolerance

The subcutaneous and intramuscular administration of 1 mL of a solution of sumatriptan (50 mg/mL) to rabbits produced no overt signs of irritancy and caused only slight necrotic changes in the deepest layers of the subcuticular muscle. While the subcutaneous lesions healed in a rapid and uncomplicated manner, the intramuscular lesions were moderately slow to heal.

At a lower concentration (2.5 mg/mL) no signs of subcutaneous or intramuscular irritancy were apparent.

In inhalation toxicity studies (dog, monkey), no irritants of the nasal passages or respiratory tract tissues were identified after intranasal administration of sumatriptan.

Skin and Eye Irritancy

Sumatriptan produced little or no irritant reaction when applied topically to the skin of guineapigs and was a non-irritant in the rabbit eye.
Sumatriptan was shown to be devoid of detectable skin sensitizing potential in guinea-pigs subjected to a 12-day induction period (0.05 mL of a 10% solution, applied epicutaneously) prior to challenge with sumatriptan.

Dependence Liability

The physical dependence liability of sumatriptan was assessed in Cynomolgus monkeys at an oral dose of 5 mg/kg, the lowest tolerable dose causing mild to moderate CNS effects.

The behavioral changes observed upon withdrawal of sumatriptan were limited in number, sporadic, unsustained and were not observed in all animals. It would appear that sumatriptan does not share with compounds such as opiates and benzodiazepines, the ability to cause physical dependence.
REFERENCES

39. Imitrex® Product Monograph, GlaxoSmithKline Inc. Last revised April 17, 2018, Submission Control No. 212914.
PART III: CONSUMER INFORMATION

Pr Taro-Sumatriptan
(Sumatriptan succinate injection, BP)
6 mg sumatriptan
6 mg/0.5 mL
Subcutaneous Injection and Auto-injector

This leaflet is part III of a three-part “Product Monograph” published when Taro-Sumatriptan was approved for sale in Canada and is designed specifically for Consumers. Please read this leaflet carefully before you take Taro-Sumatriptan. This leaflet provides a summary of the information available on your medicine. This leaflet will not tell you everything about Taro-Sumatriptan. Please do not throw away this leaflet until you have finished your medicine. You may need to read it again. Contact your doctor or pharmacist if you have any questions about the drug.

ABOUT THIS MEDICATION

The name of your medicine is Taro-Sumatriptan. It can be obtained only by prescription from your doctor. The decision to use Taro-Sumatriptan is one that you and your doctor should make jointly, taking into account your individual preferences and medical circumstances. If you have risk factors for heart disease (such as high blood pressure, high cholesterol, obesity, diabetes, smoking, strong family history of heart disease, or you are postmenopausal or a male over 40), you should tell your doctor, who should evaluate you for heart disease in order to determine if Taro-Sumatriptan is appropriate for you.

What the medication is used for:
Taro-Sumatriptan is intended to relieve your migraine headache and other associated symptoms of a migraine attack. Taro-Sumatriptan should not be used continuously to prevent or reduce the number of attacks you experience. Use Taro-Sumatriptan only to treat an actual migraine headache attack.

What it does:
Migraine headache is believed to be caused by a widening of the blood vessels in the head. Taro-Sumatriptan narrows these vessels and relieves the symptoms of migraine headache.

When it should not be used:
Do not use Taro-Sumatriptan, if:
- you are allergic to sumatriptan succinate, or any of the other ingredients in Taro-Sumatriptan (See “What the non-medicinal ingredients are”)
- you have a history, or any symptom or signs of a heart condition
- you have high blood pressure
- you are taking or have recently taken (within 2 weeks) a monoamine oxidase inhibitor (MAOI)
- you are taking or have recently taken (within 24 hours) an ergotamine containing medication or its derivatives, or another triptan used to treat migraine
- you have severe liver disease.

Taro-Sumatriptan should not be used for the treatment of other types of headaches that are different from migraine attacks.

Taro-Sumatriptan should not be given intravenously, but only into the tissues just below the skin (on the outside of the thigh or in the upper arm).

What the medicinal ingredient is:
sumatriptan succinate

What the non-medicinal ingredients are:
sodium chloride solution

The needle shield contains dry natural rubber (a latex derivative).

What dosage forms it comes in:
Taro-Sumatriptan [6 mg; total volume= 0.5 mL] is available in two pre-filled syringes, and each provided with an auto-injector.

WARNINGS AND PRECAUTIONS

BEFORE you use Taro-Sumatriptan talk to your doctor or pharmacist if:
- you are allergic to latex (the needle shield contains dry natural rubber, a latex derivative, that has the potential to cause allergic reactions in latex-sensitive patients).
- you are pregnant, think you might be pregnant, you are trying to become pregnant, you are using inadequate contraception, or you are breast-feeding
- you have chest pain, heart disease, shortness of breath, or irregular heartbeats, you have had a heart attack, or you have angina
- you have risk factors for heart disease (such as high blood pressure, high cholesterol, obesity, diabetes, smoking, strong family history of heart disease, or you are postmenopausal or a male over 40)
- you have ever had to stop taking this or any medication because of an allergy or other problems, or you are allergic to sulpha-containing drugs
- you are taking any medications, including migraine medications such as other triptans, 5-HT1 agonists or those containing ergotamine, dihydroergotamine, or methysergide
- you have ever experienced difficulty moving one side of your body when you have a headache
- you have ever had a stroke, transient ischemic attacks (TIAs) or Raynaud Syndrome
- you are under 18 years of age
- you are over 65 years of age
IMPORTANT: PLEASE READ

- you are taking any medication for depression (lithium, monoamine oxidase inhibitors, selective serotonin reuptake inhibitors (SSRIs), or serotonin noradrenaline reuptake inhibitors (SNRIs))
- you had, or you have any disease of the liver or kidney
- you had, or you have epilepsy or seizures
- this headache is different from your usual migraine attacks.

Taro-Sumatriptan should not be used continuously to prevent or reduce the number of attacks you experience. Use Taro-Sumatriptan only to treat an actual migraine headache attack.

If you use Taro-Sumatriptan too often, it may make your headache worse. If this happens, your doctor may tell you to stop taking it.

The Use of Taro-Sumatriptan During Pregnancy:
Do not use Taro-Sumatriptan if you are pregnant, think you might be pregnant, are trying to become pregnant, or are not using adequate contraception, unless you have discussed this with your doctor.

INTERACTIONS WITH THIS MEDICATION
Do not use Taro-Sumatriptan if you are taking or have recently taken a monoamine oxidase inhibitor (MAOI) in the last 2 weeks, or any migraine medications containing ergotamine, ergot derivatives (such as dihydroergotamine, or methysergide), or any other triptans used to treat migraine within 24 hours.

You should tell your doctor if you are taking or have recently taken any other medications (prescription, non-prescription or natural/herbal), before you start taking Taro-Sumatriptan, especially any antidepressants such as (SSRIs) and certain tricyclics.

PROPER USE OF THIS MEDICATION
The label on the container of your medicine or the leaflet inside should tell you how often to take a dose and the amount you should take in each dose. If it does not or you are not sure, ask your doctor or pharmacist. **DO NOT** take more medicine or take your medicine more often than you are told.

Usual dose:
Before using Taro-Sumatriptan, read the instructions in HOW TO USE THE AUTO-INJECTOR.

Adults: Inject 6 mg (single injection), into the tissues just below the skin (on the outside of the thigh or in the upper arm). Taro-Sumatriptan can be taken at any time during your migraine headache.

If the first injection does not relieve your headache, do not take further doses of sumatriptan for the same attack. However, you may take pain medication other than ergotamine-containing preparations for further pain relief. Sumatriptan may be taken for subsequent attacks.

A second injection (6 mg) can be taken if your symptoms come back provided 1 hour has passed since your last dose. Do not take more than two injections (2 x 6 mg) in any 24 hour period.

Overdose:
If you think you have taken too much Taro-Sumatriptan, contact your healthcare professional, hospital emergency department or regional poison control centre immediately, even if there are no symptoms.

HOW TO USE THE AUTO-INJECTOR
This leaflet explains how to use the Taro-Sumatriptan auto-injector. Read it several times to make sure you understand it, before you begin the first step. If you have any questions, ask your doctor or pharmacist.

CAUTIONS:
Do not remove the white needle shield from the auto-injector until you are ready to give an injection. Keep the Taro-Sumatriptan autoinjector out of the reach of children.

Check the appearance of Taro-Sumatriptan, through the inspection window (Figure 1). It must be a clear, colorless to pale yellow solution. Do not inject the solution if it looks discolored or cloudy or contains lumps, flakes, or particles.

Figure 1
How to use the auto-injector

Wash your hands thoroughly.

Find a comfortable, well-lit place and put everything you need where you can reach it (auto-injector, alcohol or sterile swabs).

Identify the application area with an adequate fatty tissue layer for example on top part of the thigh or back of the arm (Figure 2). Do not inject into areas where the skin is tender, bruised, red, or hard.

Wipe the injection site with alcohol or a new sterile swab and allow your skin to dry. Do not touch this area again before giving the injection.

Take out the auto-injector from the carton.

Pick up the auto-injector in one hand and smoothly remove the white needle shield by pulling it straight off (Figure 3). Do not twist it off, and do not recap the white needle shield, as either of these may damage the needle inside the auto-injector. The auto-injector has a cover that will protect you from needle sticks or loss of drug by accidental bumping or touching.

Without pressing the blue activation button, place the open end of the auto-injector on the injection site, straight up at a right angle (90º) and push the safety needle cover firmly against the skin to unlock (Figure 4A and Figure 4B, below). Continue to hold firmly against the skin.

To start the injection (Figure 5A):
(1) Press the Blue Button (first click will sound),
(2) Immediately release your thumb.

This starts the injection. Do not lift the auto-injector off the skin. Wait until you hear the second ‘click’. Once you hear the second click, lift the auto-injector straight up from the injection site. The injection is finished. The safety needle cover on the auto-injector will automatically extend to cover the needle. The needle will not be visible now.
If you did not remove your thumb from the blue button, the second ‘click’ cannot be heard. If this happens, slowly count to 10 before lifting the auto-injector from the injection site.

The needle safety cover will move down over the needle (Figure 5B) and lock into place. The inspection window will be blue, confirming the injection is complete. Verify that the inspection window is blue to ensure that the injection is complete before lifting the auto-injector (Figure 6). There is no need to replace the white needle shield.

If the inspection window is not blue, do not try to use the auto-injector again. NEVER ATTEMPT TO REUSE AN AUTO-INJECTOR.

If you suspect you have not received the full dose, do not repeat the injection using a new auto-injector.

If you notice a spot of blood at the injection site, dab away with a cotton ball or tissues. Do not rub the injection site. If needed, you may cover the injection site with a bandage.

Discard the auto-injector as instructed by your pharmacist. Do not discard in regular home waste.

SIDE EFFECTS AND WHAT TO DO ABOUT THEM

Like all medicines, Taro-Sumatriptan can cause some side effects. You may not experience any of them. For most patients these side effects are likely to be minor and temporary. However, some may be serious. Consult your doctor if you experience these or other side effects.

The most commonly reported side effects of sumatriptan succinate injection are:

- pain, pressure or tightness in any part of the body, including chest and throat
- sensations of heaviness
- unusual sensations including numbness, tingling, heat/burning or cold
- flushing (redness of the face lasting for a short time)
- feeling sick or vomiting
- dizziness
- drowsiness
- tiredness
- weakness
- redness at the site of injection, but this usually lasts less than an hour.

As drowsiness may occur as a result of using Taro-Sumatriptan, do not drive or operate machinery until you are sure that you are not drowsy.
Other side effects include:
• unusually slow or fast heartbeats, a feeling of irregular and/or forceful heartbeats
• visual disturbances, usually temporary (scotoma, nystagmus, flickering, diplopia, usually temporary)
• dystonia (shaking, tremors or uncontrolled movements)
• loss of normal coloration in the fingers and toes.

Tell your doctor of these symptoms at your next visit.

Very rarely, some people have reported the following more serious side effects. For information on what to do if you experience these side effects, see the table at the end of this section.

• pain or tightness in the chest or throat
• loss of vision
• shortness of breath; wheeziness; chest tightening; swelling of eyelids, face, lips, or a skin rash, skin lumps
• a seizure or fit
• sudden and/or severe abdominal pain
• persistent purple discoloration of hands or feet.

If you feel unwell in any other way or have any symptoms that you do not understand or find distressing, you should contact your doctor immediately.

This is not a complete list of side effects. For any unexpected effects while taking Taro-Sumatriptan, contact your doctor or pharmacist.
HOW TO STORE IT

Keep your medicine in a safe place where children cannot reach it. It may be harmful to children.

Keep your pre-filled syringe away from heat and light which may spoil them. Store the pre-filled syringe and the auto-injector at controlled room temperature between 15-30°C. Improper handling of the device would jeopardize the sterility of the syringe and drug product. Protect from light.

If your medicine has expired, discard as instructed by your pharmacist. DO NOT USE AFTER EXPIRY.

If your doctor decides to stop your treatment, do not keep any leftover medicine unless your doctor tells you to. Discard your medicine as instructed. Do not discard in regular home waste. Throw away your medicine as instructed.

Reminder:
REMEMBER: This medication is for you. Only a doctor can prescribe it for you. Never give it to someone else. It may harm them even if their symptoms appear to be similar to yours.

REPORTING SUSPECTED SIDE EFFECTS

You can report any suspected side effects associated with the use of health products to Health Canada by:

- Visiting the Web page on Adverse Reaction Reporting (https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/adverse-reaction-reporting.html) for information on how to report online, by mail or by fax; or
- Calling toll-free at 1-866-234-2345.

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

MORE INFORMATION

If you want more information about Taro-Sumatriptan:
- Talk to your healthcare professional
- Find the full product monograph that is prepared for healthcare professionals and includes this Consumer Information by visiting the Health Canada website (https://www.canada.ca/en/health-canada.html); the manufacturer’s website www.taro.ca or by contacting the sponsor, Taro Pharmaceuticals Inc. at 1-800-268-1975

This leaflet was prepared by:
Taro Pharmaceuticals Inc.
130 East Drive,
Brampton, Ontario
L6T 1C1

Last revised: June 26, 2019.