PRODUCT MONOGRAPH
INCLUDING PATIENT MEDICATION INFORMATION

PrIMURAN®

Azathioprine Tablets USP
(50 mg)

Azathioprine sodium for Injection, Manufacturer’s Standard
(50 mg azathioprine per vial)

Immunosuppressive Agent

Aspen Pharmacare Canada Inc.
8 – 1155 North Service Road West
Oakville, ON, L6M 3E3

Date of Initial Approval:
December 31, 1966

Date of Revision:
June 17, 2019

Submission Control No: 224683

Trademarks are owned by or licensed to the Aspen Group of companies.
RECENT MAJOR LABEL CHANGES

Contraindications (2) 11/2018
Serious Warnings and Precautions Box (3) 11/2018
Dosage and Administration, Recommended Dose and Dosage Adjustment (4.2) 11/2018
Dosage and Administration, Reconstitution (4.4) 11/2018
Warning and Precaution (7) 11/2018
Warning and Precaution, Pregnant Women (7.1.1) 11/2018

TABLE OF CONTENTS

PART I: HEALTH PROFESSIONAL INFORMATION ... 4

1 INDICATIONS .. 4
 1.1 Pediatrics .. 4
 1.2 Geriatrics .. 4

2 CONTRAINDICATIONS ... 4

3 SERIOUS WARNINGS AND PRECAUTIONS BOX ... 5

4 DOSAGE AND ADMINISTRATION ... 5
 4.1 Recommended Dose and Dosage Adjustment ... 5
 4.2 Administration ... 6
 4.3 Reconstitution .. 6

5 OVERDOSAGE .. 7

6 DOSAGE FORMS, STRENGTHS, COMPOSITION AND PACKAGING 7

7 WARNINGS AND PRECAUTIONS .. 8
 7.1 Special Populations ... 10
 7.1.1 Pregnant Women .. 10
 7.1.2 Breast-feeding .. 11
 7.1.3 Pediatrics .. 11
 7.1.4 Geriatrics .. 11

8 ADVERSE REACTIONS ... 11
 8.1 Adverse Reaction Overview .. 11
 8.2 Clinical Trial Adverse Reactions ... 12
 8.3 Less Common Clinical Trial Adverse Reactions .. 13
 8.4 Post-Market Adverse Reactions .. 13

9 DRUG INTERACTIONS ... 13
 9.1 Drug-Drug Interactions ... 13

10 ACTION AND CLINICAL PHARMACOLOGY .. 14
 10.1 Mechanism of Action ... 14
 10.2 Pharmacodynamics .. 15
 10.3 Pharmacokinetics ... 15

11 STORAGE, STABILITY AND DISPOSAL ... 16

12 SPECIAL HANDLING INSTRUCTIONS .. 16

PART II: SCIENTIFIC INFORMATION .. 17

13 PHARMACEUTICAL INFORMATION .. 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLINICAL TRIALS</td>
<td>18</td>
</tr>
<tr>
<td>14.1 Trial Design and Study Demographics</td>
<td>18</td>
</tr>
<tr>
<td>14.2 Comparative Bioavailability Studies</td>
<td>18</td>
</tr>
<tr>
<td>NON-CLINICAL TOXICOLOGY</td>
<td>19</td>
</tr>
</tbody>
</table>
PART I: HEALTH PROFESSIONAL INFORMATION

1 INDICATIONS

Renal Homotransplantation
IMURAN (azathioprine Tablets USP) and IMURAN for injection (azathioprine sodium for Injection, Manufacturer’s Standard) is indicated as an adjunct for the prevention of rejection in renal homotransplantation.

Rheumatoid Arthritis
IMURAN is indicated only in adult patients meeting criteria for classic or definite rheumatoid arthritis as specified by the American Rheumatism Association. IMURAN should be restricted to patients with severe, active and erosive disease not responsive to conventional management including rest, acetylsalicylic acid or other non-steroidal drugs, or with disease-modifying antirheumatic drugs (DMARD’s).

1.1 Pediatrics

Pediatrics (<18 years of age): No data are available to Health Canada; therefore, Health Canada has not authorized an indication for pediatric use.

1.2 Geriatrics

Geriatrics (> 65 years of age): No data are available to Health Canada; therefore, Health Canada has not authorized an indication for geriatric use.

2 CONTRAINDICATIONS

IMURAN is contraindicated in patients who are hypersensitive to this drug or to any ingredient in the formulation, including any non-medicinal ingredient, or component of the container. For a complete listing, see DOSAGE FORMS, STRENGTHS, COMPOSITION AND PACKAGING.
4 DOSAGE AND ADMINISTRATION

4.1 Recommended Dose and Dosage Adjustment

Renal Homotransplantation
The dose of IMURAN (azathioprine) required to prevent rejection and minimize toxicity will vary with individual patients; this necessitates careful management. The initial dose is usually 3-5 mg/kg daily, beginning at the time of transplant. IMURAN is usually given as a single daily dose on the day of, and in a minority of cases one to three days before, transplantation. IMURAN is often initiated with the intravenous administration of the sodium salt, with subsequent use of tablets (at the same dose level) after the post-operative period. Intravenous administration of the sodium salt is indicated only in patients unable to tolerate oral medications. Dose reduction to maintenance levels of 1-3 mg/kg daily is usually possible. The dose of IMURAN should not be increased to toxic levels because of threatened rejection. Discontinuation may be necessary for severe hematologic or other toxicity, even if rejection of the homograft may be a consequence of drug withdrawal.

Rheumatoid Arthritis
IMURAN is usually given on a daily basis. The initial dose should be approximately 1.0 mg/kg (50-100 mg) given as a single dose or on a twice daily schedule. The dose may be increased, beginning at six to eight weeks and thereafter by steps at four-week intervals, if there are no serious toxicities and if initial response is unsatisfactory. Dose increments should be 0.5 mg/kg daily, up to a maximum dose of 2.5 mg/kg/day. Therapeutic response occurs after several weeks of treatment, usually six to eight; an adequate trial should be a minimum of 12 weeks. Patients not improved after twelve weeks can be considered refractory. IMURAN may be continued long-term in patients with clinical response, but patients should be monitored carefully, and gradual dosage reduction should be attempted to reduce risk of toxicities. Maintenance therapy should be at the lowest effective dose, and the dose given can be lowered, with decremental changes of 0.5 mg/kg or approximately 25 mg daily every four weeks, while other therapy is kept constant. The optimum duration of maintenance IMURAN has not been determined. IMURAN can be discontinued abruptly, but delayed effects are possible.

Rest, physiotherapy and salicylates should be continued while IMURAN is given, but it may be possible to reduce the dose of corticosteroids in patients on IMURAN.

Use in Renal Dysfunction
Relatively oliguric patients, especially those with tubular necrosis in the immediate post-cadaveric transplant period, may have delayed clearance of IMURAN or its metabolites, or be particularly sensitive to this drug, and are usually given lower doses.

4.2 Administration

IMURAN® for Injection ONLY:

Parenteral Administration

FOR INTRAVENOUS USE ONLY. A 50mg vial should be reconstituted with 5 to 15 mL Sterile Water for Injection, however to obtain a nominal concentration of 10mg/mL, 5mL of Sterile Water for Injection should be used. Once the Sterile Water for Injection has been added, swirl until a clear solution results. This solution has a pH of approximately 10-12. No antimicrobial preservative is included. Therefore reconstitution and dilution must be carried out under full aseptic conditions, preferably immediately before use. Any unused solution should be discarded. Further dilution into sterile saline is usually made for infusion; the final volume depends on time for the infusion, usually 30-60 minutes but as short as five minutes and as long as eight hours for the daily dose.

4.3 Reconstitution

Parenteral Products:

<table>
<thead>
<tr>
<th>Vial Size</th>
<th>Volume of Diluent to be Added to Vial</th>
<th>Approximate Available Volume</th>
<th>Nominal Concentration per mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg</td>
<td>5 ml</td>
<td>5 ml</td>
<td>10 mg/ml</td>
</tr>
</tbody>
</table>

SHAKE UNTIL COMPLETE DISSOLUTION.

No antimicrobial preservative is included. Therefore reconstitution and dilution must be carried out under full aseptic conditions, preferably immediately before use. Any unused solution should be discarded.
Intravenous Infusion: Further dilution into sterile saline is usually made for infusion. The final volume depends on the time for the infusion, usually 30-60 minutes, but as short as five minutes and as long as eight hours for the daily dose.

As with all parenteral drug products, intravenous admixtures should be inspected visually for clarity, particulate matter, precipitate, discolouration and leakage prior to administration whenever solution and container permit. Solutions showing haziness, particulate matter, precipitate, discolouration or leakage should not be used. Discard unused portion.

5 OVERDOSE

Initial symptoms are nausea and vomiting; and symptoms appearing later are leukopenia, thrombocytopenia, hepatic necrosis and anorexia. If overdose occurs, the patient must be monitored for toxicity. Treatment of overdose with IMURAN consists of general supportive measures including monitoring of vital signs as well as observation of the clinical status of the patient.

There is no specific antidote for overdose with IMURAN. About 30% of IMURAN is bound to serum proteins, but approximately 45% is removed during an 8-hour hemodialysis. A single case has been reported of a renal transplant patient who ingested a single dose of 7500 mg IMURAN. The immediate toxic reactions were nausea, vomiting, and diarrhea, followed by mild leukopenia and mild abnormalities in liver function. The white blood cell count, AST, and bilirubin returned to normal 6 days after the overdose.

For management of a suspected drug overdose, contact your regional poison control centre.

6 DOSAGE FORMS, STRENGTHS, COMPOSITION AND PACKAGING

Table – Dosage Forms, Strengths, Composition and Packaging.

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form / Strength/Composition</th>
<th>Non-medicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Tablet / 50 mg</td>
<td>Lactose, magnesium stearate, microcrystalline cellulose and starch</td>
</tr>
<tr>
<td>Injection</td>
<td>Solution 50 mg</td>
<td>Sodium hydroxide (to adjust pH)</td>
</tr>
</tbody>
</table>

IMURAN® Tablets:

Composition
In addition to azathioprine, each IMURAN tablet contains the non-medicinal ingredients lactose, magnesium stearate, microcrystalline cellulose and starch.

Packaging
IMURAN (azathioprine) 50 mg Tablets are pale yellow, peanut-shaped tablets, scored and engraved "AZ 50" on one side. IMURAN Tablets are available in bottles of 100, 250, 500 and 1000 tablets.

IMURAN® for Injection:

IMURAN for Injection is available as sterile lyophilized material. Each 17 mL single dose vial contains the equivalent of 50 mg azathioprine as sodium salt.

IMURAN for Injection vials contain 50 mg azathioprine sterile lyophilized material as the sodium salt, and sodium hydroxide to adjust pH.
7 WARNINGS AND PRECAUTIONS

Please see the Serious Warnings and Precautions Box at the beginning of Part I: Health Professional Information.

General
Physicians prescribing this drug should be very familiar with the mutagenic potential of the drug to both men and women and with its possible hematologic toxicities. Physicians should inform patients of the risk of malignancy with IMURAN (see WARNINGS AND PRECAUTIONS, Carcinogenesis and Mutagenesis and Hematologic).

The dosage that will be tolerated or effective will vary from patient to patient. Therefore, careful management is necessary to obtain the optimum therapeutic effect and to reduce toxicity. Caution must be exercised to observe early signs of depression of the bone marrow which may result in leukopenia and eventually thrombocytopenia and bleeding. Since this drug may have a delayed action, it is important to withdraw the medication temporarily at the first sign of an abnormally large fall in the white cell count or of abnormal depression of the bone marrow. It must be kept in mind that patients with impaired renal function may have slower elimination of the drug and a greater cumulative effect. Lower dose if there is impaired renal function. It is recommended that the drug be withheld if there is evidence of toxic hepatitis or biliary stasis.

A persistent negative nitrogen balance has been observed in some patients on continuous azathioprine dosage; if this should occur, the dose should be reduced as this has been found to correct the situation.

The combined use of IMURAN with DMARD’s have not been studied for either added benefit or unexpected adverse effects. The use of IMURAN with these agents cannot be recommended.

Carcinogenesis and Mutagenesis
IMURAN is carcinogenic and mutagenic is human and animal (see NON-CLINICAL TOXICOLOGY).

Patients receiving immunosuppressive drugs, including azathioprine, particularly transplant patients receiving aggressive therapy, are known to have an increased risk of developing lymphoproliferative disorders (including the rarer, very aggressive and usually fatal hepatosplenic T-cell lymphoma [HSTCL]) and other malignancies, notably skin cancer (melanoma and non-melanoma, sarcomas (Kaposi’s and non-Kaposi’s), uterine cervical cancer in situ, and reticulum cell or lymphomatous tumors. The increased risk appears to be related to the degree and duration of immunosuppression.

It has been reported that discontinuation of immunosuppression may provide partial regression of lymphoproliferative disorders. A treatment regimen containing multiple immunosuppressants (including thiopurines) should therefore be used with caution as this could lead to lymphoproliferative disorders, some with reported fatalities. A combination of multiple immunosuppressants, given concomitantly increases the risk of Epstein-Barr virus (EBV)-associated lymphoproliferative disorders.

The degree of immunosuppression is determined not only by the immunosuppressive regimen, but also by a number of other patient factors. The number of immunosuppressive agents may not necessarily increase the risk of lymphomas. However, patients who receive multiple immunosuppressive agents may be at risk for over-immunosuppression; therefore, immunosuppressive drug therapy should be maintained at the lowest effective levels.

As is usual for patients with increased risk for skin cancer, exposure to sunlight and UV light should be limited, and patients should wear protective clothing and use a sunscreen with a high protection factor.
Information is available on the spontaneous neoplasia risk in rheumatoid arthritis, and on neoplasia following immunosuppressive therapy of other auto-immune diseases. It has not been possible to define the precise risk of neoplasia due to IMURAN. The increased risk of developing non-Hodgkin’s lymphomas in immunosuppressed rheumatoid arthritis patients compared with the general population appears to be related at least in part to the disease itself. However, acute myelogenous leukemia as well as solid tumors have been reported in patients with rheumatoid arthritis who have received azathioprine. Data on neoplasia in patients receiving IMURAN can be found under ADVERSE REACTIONS.

Patients with rheumatoid arthritis previously treated with alkylating agents (cyclophosphamide, chlorambucil, melphalan or others) may have a prohibitive risk of neoplasia if treated with IMURAN.

Driving and Operating Machinery
Due caution should be exercised when driving or operating a vehicle or potentially dangerous machinery.

Gastrointestinal
A gastrointestinal hypersensitivity reaction characterized by severe nausea and vomiting has been reported. These symptoms may also be accompanied by diarrhea, rash, fever, malaise, myalgias, elevations in liver enzymes, vasculitis, hepatic dysfunction, cholestasis and occasionally, hypotension. Symptoms of gastrointestinal toxicity may often develop within the first several weeks of IMURAN therapy and are reversible upon discontinuation of the drug. The reaction can recur within hours after rechallenge with a single dose of IMURAN.

Hematologic
Severe leukopenia and/or thrombocytopenia may occur in patients on IMURAN.

Macrocytic anemia and severe bone marrow depression may also occur. Hematologic toxicities are dose related and may be more severe in renal transplant patients whose homograft is undergoing rejection. It is suggested that patients on IMURAN have complete blood counts, including platelet counts, weekly during the first month, twice monthly for the second and third months of treatment, then monthly or more frequently if dosage alterations or other therapy changes are necessary. Delayed hematologic suppression may occur. Prompt reduction in dosage or temporary withdrawal of the drug may be necessary if there is a rapid fall in, or persistently low leukocyte count or other evidence of bone marrow depression. Leukopenia does not correlate with therapeutic effect; therefore, the dose should not be increased intentionally to lower the white blood cell count.

There are individuals with an inherited deficiency of the enzyme thiopurine methyl-transferase (TPMT) who may be unusually sensitive to the myelosuppressive effect of azathioprine and prone to developing rapid bone marrow depression following the initiation of treatment with IMURAN. This problem could be exacerbated by coadministration with drugs that inhibit TPMT, such as olsalazine, mesalazine or sulphasalazine. Also a possible association between decreased TPMT activity and secondary leukemias and myelodysplasia has been reported in individuals receiving 6-mercaptopurine (the active metabolite of azathioprine) in combination with other cytotoxics. Some laboratories offer testing for TPMT deficiency, although these tests have not been shown to identify all patients at risk of severe toxicity. Therefore close monitoring of blood counts is still necessary.

Immune
Patients receiving IMURAN alone or in combination with other immunosuppressants, particularly corticosteroids, have shown increased susceptibility to infections (e.g. fungal, viral and bacterial), including severe or atypical infection with varicella, herpes zoster and other infections agents (see ADVERSE REACTIONS). Fungal, viral, bacterial and protozoal infections may be fatal and should be treated vigorously. Reduction of azathioprine dosage and/or use of other drugs should be considered. Infection with varicella zoster virus (VZV; chickenpox and herpes zoster) may become severe during the
administration of immunosuppressants. Caution should be exercised especially with respect to the following:

Before starting the administration of immunosuppressants, the prescriber should check to see if the patient has a history of VZV. Serologic testing may be useful in determining previous exposure. Patients who have no history of exposure should avoid contact with individuals with chickenpox or herpes zoster. If the patient is exposed to VZV, special care must be taken to avoid patients developing chickenpox or herpes zoster, and passive immunisation with varicella-zoster immunoglobulin (VZIG) may be considered.

If the patient is infected with VZV, appropriate measures should be taken, which may include antiviral therapy and supportive care.

Macrophage activation syndrome

Macrophage activation syndrome (MAS) is a known, life-threatening disorder that may develop in patients with autoimmune conditions, in particular with inflammatory bowel disease (IBD), and there could potentially be an increased susceptibility for developing the condition with the use of azathioprine. If MAS occurs, or is suspected, evaluation and treatment should be started as early as possible, and treatment with azathioprine should be discontinued. Physicians should be attentive to symptoms of infection such as EBV and cytomegalovirus (CMV), as these are known triggers for MAS.

Neuromuscular agents

Special care is necessary when azathioprine is given concomitantly with neuromuscular acting agents like tubocurarine or succinylcholine (see **DRUG INTERACTIONS**). It can also potentiate the neuromuscular block that is produced by depolarising agents such as succinylcholine (see **DRUG INTERACTIONS**). Patients should be advised to inform their anaesthesiologist of their treatment with azathioprine prior to surgery.

Xanthine oxidase inhibitors

If allopurinol, oxipurinol and/or thiopurinol are given concomitantly with azathioprine, the dosage of azathioprine must be reduced to a quarter of the original dose (see **DRUG INTERACTIONS**).

Sexual Health Function/ Reproduction

IMURAN has been reported to cause temporary depression in spermatogenesis and reduction in sperm viability and sperm count in mice at doses 10 times the human therapeutic dose; a reduced percentage of fertile matings occurred when animals received 5 mg/kg (see **NON-CLINICAL TOXICOLOGY**).

7.1 **Special Populations**

7.1.1 **Pregnant Women**

There are no adequate and well-controlled studies in pregnant women therefore IMURAN should not be given to patients who are pregnant or likely to become pregnant in the near future without careful assessment of risk versus benefit.

IMURAN can cause fetal harm when administered to a pregnant woman.

IMURAN should not be given during pregnancy or in patients of reproductive potential without careful weighing of risk versus benefit. Use of IMURAN in pregnant patients should be avoided whenever possible. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Women of childbearing age should be advised to avoid becoming pregnant.
There have been reports of intra-uterine growth retardation, premature birth and low birth weight following maternal exposure to azathioprine, particularly in combination with corticosteroids. There have also been reports of spontaneous abortion following either maternal or paternal exposure.

IMURAN is teratogenic in rabbits and mice when given in doses equivalent to the human dose (5 mg/kg daily). Abnormalities included skeletal malformations and visceral anomalies (see NON-CLINICAL TOXICOLOGY).

Leukopenia and/or thrombocytopenia have been reported in a proportion of neonates whose mothers took azathioprine throughout their pregnancies. Extra care in hematological monitoring is advised during pregnancy.

Limited immunologic and other abnormalities have occurred in a few infants born of renal allograft recipients on IMURAN. In a detailed case report, documented lymphopenia, diminished IgG and IgM levels, CMV infection, and a decreased thymic shadow were noted in an infant born to a mother receiving 150 mg azathioprine and 30 mg prednisone daily throughout pregnancy. At 10 weeks most features were normalized. Pancytopenia and severe immune deficiency has been reported in a preterm infant whose mother received 125 mg azathioprine and 12.5 mg prednisone daily. There have been two published reports of abnormal physical findings. In one study an infant born with preaxial polydactyly whose mother received azathioprine 200 mg daily and prednisone 20 mg every other day during pregnancy. The second study described an infant with a large myelomeningocele in the upper lumbar region, bilateral dislocated hips, and bilateral talipes equinovarus. The father was on long-term azathioprine therapy.

7.1.2 Breast-feeding

The use of IMURAN in nursing mothers is not recommended. Azathioprine or its metabolites are transferred at low levels, both transplacentally and in breast milk. Because of the potential for tumorigenicity shown for azathioprine, a decision should be made on whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

7.1.3 Pediatrics

Pediatrics (< 18 years of age): Safety and efficacy of azathioprine in children have not been established.

7.1.4 Geriatrics

Geriatrics (> 65 years of age): Safety and efficacy of azathioprine in geriatrics have not been established.

8 ADVERSE REACTIONS

8.1 Adverse Reaction Overview

The principal and potentially serious toxic effects of IMURAN are hematologic and gastrointestinal. The risks of secondary infection and neoplasia are also significant (see WARNINGS AND PRECAUTIONS).

The frequency and severity of adverse reactions depend on the dose and duration of IMURAN as well as on the patient's underlying disease or concomitant therapies. The incidence of hematologic toxicities and neoplasia encountered in groups of renal homograft recipients is significantly higher than that in studies employing IMURAN for rheumatoid arthritis.
8.2 Clinical Trial Adverse Reactions

Because clinical trials are conducted under very specific conditions, the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

The relative incidences in clinical studies are summarized below:

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Renal Homograft</th>
<th>Rheumatoid Arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukopenia Any Degree</td>
<td>>50%</td>
<td>28%</td>
</tr>
<tr>
<td><2500/mm³</td>
<td>16%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Infections</td>
<td>20%</td>
<td><1%</td>
</tr>
<tr>
<td>Neoplasia</td>
<td>Lymphoma 0.5%</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Others 2.8%</td>
<td></td>
</tr>
</tbody>
</table>

* Data on the rate and risk of neoplasia among persons with rheumatoid arthritis treated with azathioprine are limited. The incidence of lymphoproliferative disease in patients with RA appears to be significantly higher than that in the general population. In one completed study, the rate of lymphoproliferative disease in RA patients receiving higher than recommended doses of azathioprine (5 mg/kg/day) was 1.8 cases per 1000 patient years of follow-up, compared with 0.8 cases per 1000 patient years of follow-up in those not receiving azathioprine. However, the proportion of the increased risk attributable to the azathioprine dosage or to other therapies (i.e., alkylating agents) received by patients treated with azathioprine cannot be determined.

Hematologic
Leukopenia and/or thrombocytopenia and rarely as agranulocytosis, pancytopenia and aplastic anemia are dose dependent and may occur late in the course of IMURAN therapy. Dose reduction or temporary withdrawal allows reversal of these toxicities. These adverse events occur particularly in patients predisposed to myelotoxicity, such as those with TPMT deficiency (see WARNINGS AND PRECAUTIONS) and renal or hepatic insufficiency and in patients failing to reduce the dose of IMURAN when receiving concurrent allopurinol therapy (see WARNINGS AND PRECAUTIONS). Infection may occur as a secondary manifestation of bone marrow suppression or leukopenia, but the incidence of infection is 30 to 60 times greater in renal homotransplantation than in rheumatoid arthritis. Macrocytic anemia and/or bleeding have been reported in patients on IMURAN.

Gastrointestinal
Nausea and vomiting may occur within the first few months of IMURAN therapy, and occurred in approximately 12% of 676 rheumatoid arthritis patients. The frequency of gastric disturbance can often be reduced by administration of the drug in divided doses and/or after meals. However, in some patients, nausea and vomiting may be severe and may be accompanied by symptoms such as diarrhea, fever, malaise, vasculitis, hepatic dysfunction, cholestatis and myalgias (see WARNINGS AND PRECAUTIONS). Vomiting with abdominal pain may occur rarely with a hypersensitivity pancreatitis.

Infections and Infestations
Infections (i.e. viral, fungal and bacterial) occur very commonly in transplant patients receiving azathioprine in combination with other immunosuppressants and uncommonly in other patient populations (See WARNINGS AND PRECAUTIONS).

Hepatic
Hepatotoxicity manifested by elevation of serum alkaline phosphatase, bilirubin and/or serum transaminases is known to occur with thiopurines including IMURAN and PURINETHOL (6-
mercaptopurine). This toxic hepatitis with biliary stasis is known to occur in homograft recipients. Hepatotoxicity has been uncommon in rheumatoid arthritis patients on IMURAN (less than 1%). Hepatotoxicity following transplantation most often occurs within 6 months of transplantation and is generally reversible after interruption of IMURAN.

Rare but life-threatening hepatic damage associated with chronic administration of azathioprine has been described primarily in transplant patients and in one patient receiving IMURAN for panuveitis. Histological findings include sinusoidal dilation, peliosis hepatis, veno-occlusive disease and nodular regenerative hyperplasia. Periodic measurement of serum transaminases, alkaline phosphatase, and bilirubin is indicated for early detection of hepatotoxicity. If hepatic veno-occlusive disease is clinically suspected, IMURAN should be permanently withdrawn. In some cases withdrawal of azathioprine has resulted in either a temporary or permanent improvement in liver histology and symptoms.

8.3 Less Common Clinical Trial Adverse Reactions

Additional side effects of low frequency have been reported. These include skin rashes, alopecia, fever, arthralgias, diarrhea, steatorrhea, negative nitrogen balance, and reversible interstitial pneumonitis.

Neoplasms benign, malignant and unspecified (including cysts and polyps)

There have been reports of neoplasms (frequency rare ≥1/10,000 to <1/1000) including lymphoproliferative disorders, skin cancers (melanoma and non-melanoma), sarcomas (Kaposi’s and non-Kaposi’s), uterine cervical cancer in situ, acute myeloid leukemia and myelodysplastic syndrome (some in association with chromosomal abnormalities).

8.4 Post-Market Adverse Reactions

In addition to the adverse reaction reports from clinical trials, the following possible adverse reactions have been identified during post-approval use of azathioprine. Because these events have been reported voluntarily from a population of unknown size, estimates of frequency cannot be made. These events have been considered possible adverse reactions due to a combination of their seriousness, frequency of reporting or potential causal relationship with treatment.

Skin and subcutaneous tissue disorders: Stevens – Johnson syndrome; toxic epidermal necrolysis

Neoplasms benign, malignant and unspecified (incl cysts and polyps): Cases of hepatosplenic T-cell lymphoma (HSTCL) have been reported.

Infections and infestations: Cases of progressive multifocal leukoencephalopathy (PML) have been reported with the use of azathioprine.

9 DRUG INTERACTIONS

9.1 Drug-Drug Interactions

The drugs listed in this table are based on either drug interaction case reports or studies, or potential interactions due to the expected magnitude and seriousness of the interaction (i.e., those identified as contraindicated).

Xanthine oxidase inhibitors: The principal pathway for detoxification of azathioprine is inhibited by xanthine oxidase inhibitors. If xanthine oxidase inhibitors, such as allopurinol, oxipurinol and/or thiopurinol, are given concomitantly with azathioprine, the dosage of azathioprine must be reduced to a quarter of the original dose. Subsequent adjustment of doses of azathioprine should be made on the basis
of therapeutic response and any toxic effects.

Other agents affecting myelopoiesis: Drugs which may affect leukocyte production, including trimethoprim/sulfamethoxazole, may lead to exaggerated leukopenia, especially in renal transplant recipients.

Angiotensin converting enzyme inhibitors: The use of angiotensin converting enzyme inhibitors to control hypertension in patients on azathioprine has been reported to induce anemia and severe leukopenia.

Warfarin: IMURAN may inhibit the anticoagulant effect of warfarin.

Non-depolarizing muscle relaxants: There is clinical evidence that IMURAN antagonizes the effect of non-depolarizing muscle relaxants such as curare, d-tubocurarine and pancuronium. Experimental data confirm that azathioprine reverses the neuromuscular blockade caused by d-tubocurarine, and show that azathioprine potentiates the neuromuscular blockade caused by succinylcholine (see **WARNINGS AND PRECAUTIONS**).

As there is in vitro evidence that aminosalicylate derivatives (e.g. olsalazine, mesalazine or sulphasalazine) inhibit the TPMT enzyme, they should be administered with caution to patients receiving concurrent azathioprine therapy (See **WARNINGS AND PRECAUTIONS**).

10 ACTION AND CLINICAL PHARMACOLOGY

10.1 Mechanism of Action

Homograft Survival
Although the use of azathioprine for inhibition of renal homograft rejection is well established, the mechanism(s) for this action are somewhat obscure. The drug suppresses hypersensitivities of the cell-mediated type and causes variable alterations in antibody production. Suppression of T-cell effects, including ablation of T-cell suppression, is dependent on the temporal relationship to antigenic stimulus or engraftment. This agent has little effect on established graft rejections or secondary responses.

Alterations in specific immune responses or immunologic functions in transplant recipients are difficult to relate specifically to immunosuppression by azathioprine. These patients have subnormal responses to vaccines, low numbers of T-cells, and abnormal phagocytosis by peripheral blood cells, but their mitogenic responses, serum immunoglobulins and secondary antibody responses are usually normal.

Immunoinflammatory Response
Azathioprine suppresses disease manifestations as well as underlying pathology in animal models of auto-immune disease. For example, the severity of adjuvant arthritis is reduced by azathioprine.

The mechanisms whereby azathioprine affects auto-immune diseases are not known. Azathioprine is immunosuppressive, delayed hypersensitivity and cellular cytotoxicity tests being suppressed to a greater degree than are antibody responses. In the rat model of adjuvant arthritis, azathioprine has been shown to inhibit the lymph node hyperplasia which precedes the onset of the signs of the disease. Both the immunosuppressive and therapeutic effects in animal models are dose-related. Azathioprine is considered a slow-acting drug and effects may persist after the drug has been discontinued.
10.2 Pharmacodynamics

In view of the observations by Schwartz et al. that mercaptopurine suppressed the antibody response in rabbits injected with bovine serum albumin, the effects of azathioprine on the formation of antibodies were investigated. In the suppression of the formation of antibodies in mice to sheep red cells, as determined by hemagglutinin titers, azathioprine was found to be superior to mercaptopurine. Whereas mercaptopurine was active only at its maximum tolerated dose of 75 mg/kg, azathioprine was active at 25 mg/kg and was tolerated in doses up to 60 mg/kg for the dosage schedule employed (intraperitoneal injection for 4 successive days beginning at the time of the antigenic stimulus). The anti-immune effects of azathioprine are not due entirely to the mercaptopurine derived therefrom by splitting in vivo.

Another line of evidence which suggests that part of the activity of azathioprine may be due to its reaction with sulphydryl compounds is the potentiation of its anti-immune effect by the simultaneous administration of MYLERAN® (busulfan). (Busulfan is also known to react with sulphydryl groups in tissues.) Thus the combination of azathioprine (10 mg/kg) and busulfan (30 mg/kg) produced a marked suppression of the antibody response, whereas the minimum effective dose of azathioprine alone is 25 mg/kg, and busulfan alone is inactive at its maximum tolerated dose of 40 mg/kg. The combination of mercaptopurine (25 mg/kg) and busulfan (25 mg/kg) is inactive.

10.3 Pharmacokinetics

Distribution
The volume of distribution at steady state (Vdss) of azathioprine is unknown. The mean (± SD) apparent Vdss of 6-MP is 0.9 (±0.8) L/kg, although this may be an underestimate because 6-MP is cleared throughout the body (and not just in the liver).

Approximately 30% of azathioprine is protein bound.

Concentrations of 6-MP in cerebrospinal fluid (CSF) are low or negligible after i.v. or oral administration of 6-MP.

Metabolism
Azathioprine is well absorbed following oral administration. Maximum serum radioactivity occurs at one to two hours after oral 35S-azathioprine and decays with a half-life of five hours. This is not an estimate of the half-life of azathioprine itself but is the decay rate for all 35S-containing metabolites of the drug. Because of extensive metabolism, only a fraction of the radioactivity is present as azathioprine. Usual doses produce blood levels of azathioprine, and of mercaptopurine derived from it, which are low (<1 μg/mL). Blood levels are of little predictive value for therapy since the magnitude and duration of clinical effects correlate with thiopurine nucleotide levels in tissues rather than with plasma drug levels. Azathioprine and mercaptopurine are moderately bound to serum proteins (30%) and are partially dialyzable.

Azathioprine is cleaved in vivo to mercaptopurine. Both compounds are rapidly eliminated from blood and are oxidized or methylated in erythrocytes and liver; no azathioprine or mercaptopurine is detectable in urine after eight hours. Conversion to inactive 6-thiouric acid by xanthine oxidase is an important degradative pathway, and the inhibition of this pathway in patients receiving ZYLOPRIM (allopurinol) is the basis for the azathioprine dosage reduction required in these patients (see WARNINGS AND PRECAUTIONS, Xanthine oxidase inhibitors and DRUG INTERACTIONS). Proportions of metabolites are different in individual patients, and this presumably accounts for variable magnitude and duration of drug effects. Renal clearance is probably not important in predicting biological effectiveness or toxicities, although dose reduction is practiced in patients with poor renal function.
Elimination

After oral administration of 100mg 35S-azathioprine, 50% of the radioactivity was excreted in the urine over 24 hours and 12% in the faeces after 24 hours. In the urine, the major compound was the inactive oxidised metabolite thiouric acid. Less than 2% was excreted in the urine as azathioprine or 6-MP. Azathioprine has a high extraction ratio with a total clearance greater than 3L/min in normal volunteers. There are no data on the renal clearance or half-life of azathioprine. The renal clearance of 6-MP and the half-life of 6-MP are 191 mL/min/m2 and 0.9 hr respectively.

Mercaptopurine, a metabolite of azathioprine, has been identified in the colostrum and breast-milk of women receiving azathioprine treatment.

11 STORAGE, STABILITY AND DISPOSAL

IMURAN® Tablets:

Store at room temperature (15-30°C), protected from light.

IMURAN® for Injection:

IMURAN for injection should be stored between 15°C and 25°C and protected from light. Single dose vials. Discard unused portion.

12 SPECIAL HANDLING INSTRUCTIONS

Tablets and/or intact vials should be returned to the manufacturer for destruction. Proper precautions should be taken in packaging these materials for transport.

All materials which have come in contact with cytotoxic drugs should be segregated and incinerated at 1000°C or more. Sealed containers may explode.

Personnel regularly involved in the preparation and handling of cytotoxic agents should have bi-annual blood examinations.
PART II: SCIENTIFIC INFORMATION

13 PHARMACEUTICAL INFORMATION

Drug Substance

Proper name: Azathioprine

Chemical name: 1) 1H-Purine, 6-[(1-methyl-4-nitro-1H-imidazol-5-yl)thio]-
 2) 6-[(1-methyl-4-nitro-1H-imidazol-5-yl)thio]-1H-purine

Molecular formula and molecular mass: Base: C9H7N7O2S
 Sodium salt: C9H6N7NaO2S
 Base: 277.27
 Sodium salt: 299.24

Structural formula:

Physicochemical properties:

pKa: 8.2 (25°C)

Description: **IMURAN® Tablets:**
Azathioprine is a pale yellow, odourless powder. It is insoluble in water, soluble in dilute solutions of alkali hydroxides, sparingly soluble in dilute mineral acids and very slightly soluble in alcohol and in chloroform.

IMURAN® for injection:
Azathioprine, a pale yellow, odorless powder, is insoluble in water, but may be dissolved with addition of one molar equivalent of alkali. The sodium salt of azathioprine is sufficiently soluble to make a 10 mg/mL water solution. Azathioprine is stable in solution at neutral or acid pH,
but hydrolysis to mercaptopurine occurs in excess sodium hydroxide (0.1 N), especially on warming. Conversion to mercaptopurine also occurs in the presence of sulphydryl compounds such as cysteine, glutathione and hydrogen sulfide.

14 CLINICAL TRIALS

14.1 Trial Design and Study Demographics

Renal Homotransplantation
IMURAN is indicated as an adjunct for the prevention of rejection in renal homotransplantation. Experience with over 16,000 transplants shows a five-year patient survival of 35% to 55%, but this is dependent on donor, match for HLA antigens, antidonor or anti B-cell alloantigen antibody and other variables. The effect of IMURAN on these variables has not been tested in controlled trials.

Rheumatoid Arthritis
IMURAN is indicated only in adult patients meeting criteria for classic or definite rheumatoid arthritis as specified by the American Rheumatism Association. IMURAN should be restricted to patients with severe, active and erosive disease not responsive to conventional management including rest, acetylsalicylic acid or other non-steroidal drugs, or with disease-modifying antirheumatic drugs (DMARD’s). Rest, physiotherapy and salicylates should be continued while IMURAN is given, but it may be possible to reduce the dose of corticosteroids in patients on IMURAN. The combined use of IMURAN with DMARD’s have not been studied for either added benefit or unexpected adverse effects. The use of IMURAN with these agents cannot be recommended.

14.2 Comparative Bioavailability Studies

IMURAN® Tablets only:

Two comparative bioavailability studies were performed on healthy human volunteers - one fasted and one fed study. The rate and extent of absorption of 6-mercaptopurine were measured and compared following oral administration of 50 mg of either azathioprine 50 mg tablets or IMURAN 50 mg tablets. The results from measured data are summarized as follows.

<table>
<thead>
<tr>
<th>FASTED STUDY:</th>
<th>Summary Table of the 6-Mercaptopurine Comparative Bioavailability Data (1 x 50 mg) from Measured Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Geometric Mean</td>
</tr>
<tr>
<td>AUC₀‐T</td>
<td>azathioprine</td>
</tr>
<tr>
<td>(ng·hr/mL)</td>
<td>27.88 (52.42)</td>
</tr>
<tr>
<td>AUC₀‐∞</td>
<td>31.59 (52.42)</td>
</tr>
<tr>
<td>(ng·hr/mL)</td>
<td>33.95 (45.10)</td>
</tr>
<tr>
<td>Cₘₙₙ</td>
<td>37.31 (45.10)</td>
</tr>
<tr>
<td>(ng/mL)</td>
<td>15.3 (63.20)</td>
</tr>
<tr>
<td>Tₘₙₙ</td>
<td>1.33 (71.41)</td>
</tr>
<tr>
<td>(hours)</td>
<td>1.51 (35.22)</td>
</tr>
</tbody>
</table>

*Arithmetic means only (CV%).
†IMURAN is manufactured by Glaxo Wellcome Inc., and was purchased in Canada.
FED STUDY:

Summary Table of the 6-Mercaptopurine Comparative Bioavailability Data

(1 x 50 mg) from Measured Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric Mean</th>
<th>Arithmetic Mean (C.V.)</th>
<th>Ratio of Geometric Means (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>azathioprine</td>
<td>IMURAN†</td>
<td></td>
</tr>
<tr>
<td>AUC$_{0-T}$ (ng·hr/mL)</td>
<td>16.1078</td>
<td>17.6405</td>
<td>91.31</td>
</tr>
<tr>
<td></td>
<td>17.737 (44.9)</td>
<td>18.998 (39.0)</td>
<td></td>
</tr>
<tr>
<td>AUC$_{0-\infty}$ (ng·hr/mL)</td>
<td>23.6023</td>
<td>22.7782</td>
<td>103.62</td>
</tr>
<tr>
<td></td>
<td>24.763 (31.8)</td>
<td>24.102 (34.5)</td>
<td></td>
</tr>
<tr>
<td>C$_{max}$ (ng/mL)</td>
<td>6.9298</td>
<td>7.8071</td>
<td>88.76</td>
</tr>
<tr>
<td></td>
<td>8.299 (69.8)</td>
<td>8.868 (54.4)</td>
<td></td>
</tr>
<tr>
<td>T$_{max}$ (hours)*</td>
<td>1.847 (59.6)</td>
<td>1.791 (54.0)</td>
<td>--</td>
</tr>
<tr>
<td>T$_{1/2}$ (hours)*</td>
<td>2.216 (31.2)</td>
<td>2.075 (43.2)</td>
<td>--</td>
</tr>
</tbody>
</table>

*Arithmetic means only (CV%).
†IMURAN is manufactured by Glaxo Wellcome Inc., and was purchased in Canada.

15 NON-CLINICAL TOXICOLOGY

Acute toxicity studies in mice and rats showed a species variation and a somewhat lower toxicity when azathioprine was administered orally than when it was given intraperitoneally. The single LD50 dose in mice is 650 mg/kg, intraperitoneally, and about 2500 mg/kg, orally. In rats, the single LD50 is 310 mg/kg, intraperitoneally, and 400 mg/kg, orally. Death after an LD50 dose, and even after an LD100 dose, was delayed two to seven days. Subacute toxicity studies also demonstrated the cumulative toxicity.

When the drug was given to mice for five successive days, the maximum tolerated daily dose was 100 mg/kg intraperitoneally and 200 mg/kg orally. In rats given five consecutive daily doses, the LD50 was 100 mg/kg whether the drug was given intraperitoneally or orally, and in these animals death occurred within a day or two of the last dose.

Chronic toxicity studies in rats revealed that all the animals that died of drug toxicity at the two highest dosage levels (60 mg/kg body weight/day and 180 mg/kg body weight/day incorporated in the diet) showed agranulocytic spleens and bone marrows and hemorrhagic lungs.

There was also some colloid depletion of the thyroid and failure of spermatogenesis. None of the animals that survived the six-month period showed blood dyscrasias or histological abnormalities.

Dogs receiving 1 or 2 mg/kg body weight/day orally for 18 weeks showed a normal weight gain and no hematologic changes. Of four dogs receiving 4 mg/kg/day orally for 18 weeks, two had episodes of fever during the last six weeks and one of these died of pneumonia and had evidence of bone marrow depression. The other two dogs maintained a normal hematologic picture. Two dogs (including the one that died) showed reduced weight gain; the other two dogs that survived the dosage of 4 mg/kg/day showed at autopsy discolored and mottled lungs but no histological abnormalities in the liver, spleen, kidneys, testes, adrenals, pancreas or myocardium. Bone marrows showed normal cellularity.

A dog given ten doses of 10 mg/kg, orally, over a 12-day period became moribund four days after the last dose and had agranulocytosis and acute ulcers of the anal and rectal region with tissue necrosis. At a dose of 7.5 mg/kg given orally for ten doses, a dog maintained its weight and showed a normal white blood cell count for several months after the study; the red blood cell count was slightly depressed to 3.7 million two weeks after the final dose, but the count gradually returned to normal. At a dose of 5 mg/kg for ten doses, a dog maintained its weight and continued to show a normal blood picture for several
months. Dogs with kidney homografts generally tolerated doses of 10 mg/kg/day, orally, for two days followed by maintenance doses of 2.5 mg to 4 mg/kg/day.

The hepatotoxic potential of azathioprine was studied by Starzl et al. in 18 normal dogs. Azathioprine alone was administered for 40 days in the same dosage as used for prevention of homograft rejection. There were declines in hematocrit, weight loss and elevations of SGOT, SGPT and alkaline phosphatase.

These changes tended to occur early suggesting that the liver injury was due to direct hepatotoxicity. Although there was usually a partial recovery from these biochemical abnormalities, 13 of the 18 dogs had histologic evidence of liver injury at the end of 40 days. The principal histologic alterations were usually in the centrilobular area. As Starzl pointed out, the hepatotoxicity of azathioprine is greater in dogs than in man. This is borne out by the 3% incidence of hepatitis in the cases reported in the Registry.

Mutagenicity

Azathioprine was found to be mutagenic in a number of *in vitro* and *in vivo* genotoxicity assays

Carcinogenicity Studies

Rats: Azathioprine was administered orally in the diet at doses of 0, 3 or 10 mg/kg/day to groups of 70 male and 70 female Sprague-Dawley rats for 90 and 97 consecutive weeks, respectively.

A life-table analysis indicated comparable cumulative survival of the control and 3 mg/kg/day female group. Survival of the male 3 mg/kg/day group began to diverge from the control group by day 600. Reduced cumulative survival of the male and female 10 mg/kg/day groups compared to the controls began by 450 and 350 days respectively. There were no effects on food consumption. The mean weight of the 10 mg/kg group was lower than the untreated control group mean.

There was a marked depletion of body fat in the 10 mg/kg/day rats. An increased incidence of neoplasms of the skin, ear canal (including the auditory sebaceous or Zymbal's gland) and preputial gland was associated with azathioprine administration. The presence of a few neoplasms of the nonglandular stomach in the treated males was considered potentially significant due to their rare spontaneous occurrence. Two mucinous adenocarcinomas of the duodenum, which were noted in the male 3 mg/kg/day group, were considered possibly significant.

Mice: A study was carried out to determine the carcinogenic effects of azathioprine when given orally in the diet to mice during an 18-month period. Six hundred (300 males and 300 females) clinically healthy 21-day-old mice were used in this study. Mice were randomly assigned to 1 of the 3 following dose groups of 100 males and 100 females: 0 mg/kg/day, 3 mg/kg/day and 10 mg/kg/day.

Mice in the high dose group (10 mg/kg/day) were fed a drug-free diet during dose weeks 21 through 38 because high mortality due to drug toxicity was observed. Otherwise the drug-diet mixture was fed until there was 10 to 20% survival of that sex in any treatment groups. Surviving females were sacrificed after 524 to 530 days on study and surviving males after 600 to 602 days on study.

Mice were observed daily and palpated weekly for tumors. Complete necropsies were performed on each mouse after death or sacrifice. Representative sections of all major organs and all tumors were fixed, prepared, and examined histologically from high dose (10 mg/kg/day) and control mice. Target organs and all tumors were examined from low dose (3 mg/kg/day) mice.

Azathioprine in the diet significantly reduced the survival of 3 mg/kg/ day females and 10 mg/kg/day males and females. Paleness of the mucous membranes, probably due to anemia, was observed. Significant differences in food consumption and body weights were periodically observed, but they were not consistently present throughout the study.
The number of clinically palpable nodules was similar in control and treated mice. At necropsy enlarged thymuses, lymph nodes, and spleens were observed, especially in the high dose group. Cystic endometrial hyperplasia was present in the majority of control and treated females.

Histologically, both male and female mice had a dose-related increase (p<.01) in lymphosarcomas. This increased incidence of lymphosarcoma in azathioprine-dose females was also responsible for a significant (p<.01) increase in total malignant and/or malignant plus benign tumors. In treated male mice, the incidence of malignant or malignant plus benign tumors was not significantly increased.

Synergistic immunosuppression with N-nitrosobutylurea and azathioprine induced leukemia, mean latent period of 189 days, in 14 of 24 (58%) C57BL mice. Immunosuppression with azathioprine of NZB X NZW mice that had lupus nephritis also increased the incidence of lymphosarcoma. In view of the above, lymphosarcoma as observed in this current study in treated mice may have been secondary to azathioprine immunosuppression.

An increased number of squamous cell carcinomas was observed in the preputial area of treated mice, and for purposes of statistical comparison were considered to be of preputial gland origin. Although the total number of these tumors in either treated group of male mice was not significantly greater than the number in controls, a positive dose response was detected statistically. The incidence of spontaneous preputial gland carcinomas reported in the literature is low; therefore, these tumors may have been induced by azathioprine.

Long-term carcinogenicity studies of azathioprine showed an increased incidence of lymphosarcomas, as well as epithelial tumours and carcinomas in mice and rats, respectively, at dosages of up to 2-fold the human therapeutic dose and at lower dosages in immunocompromised mice.

Teratology Studies
Reproductive studies have been performed in a variety of species. Studies in pregnant rats, mice and rabbits using azathioprine in dosages from 5 to 15 mg/kg bodyweight/day over the period of organogenesis have shown varying degrees of foetal abnormalities. The administration of azathioprine to pregnant rats and one strain of mice did not produce significant congenital anomalies. However, studies with pregnant rabbits and Swiss-Webster mice have shown that azathioprine has significant teratogenic potential producing resorptions and skeletal anomalies even when administered as late as the midpoint of gestation. Teratogenicity was evident in rabbits at 10 mg/kg bodyweight/day.
READ THIS FOR SAFE AND EFFECTIVE USE OF YOUR MEDICINE
PATIENT MEDICATION INFORMATION

PRIMURAN®

Azathioprine Tablets USP
(50 mg)

Azathioprine Sodium for Injection
(50 mg azathioprine per vial)

Read this carefully before you start taking IMURAN and each time you get a refill. This leaflet is a summary and will not tell you everything about this drug. Talk to your healthcare professional about your medical condition and treatment and ask if there is any new information about IMURAN.

Serious Warnings and Precautions
- may increase your risk of developing cancer, especially skin cancer and lymphoma
- can cause a severe decrease in the number of white blood cells and platelets thereby increasing your risk of having infection and unusual bleeding or bruising
- can cause harm to an unborn child when taken by a pregnant woman
- should be prescribed by doctors who are experienced in immunosuppressive therapy and management of organ transplant

What is IMURAN used for?
IMURAN, is used in adults:
- along with other medications to prevent kidney rejection after a transplant.
- With Rheumatoid Arthritis who cannot be treated with other medications and treatments.

How does IMURAN work?
IMURAN belongs to a group of medicines called immunosuppressants. It reduces the strength of your immune system. This helps your body accept an organ after a transplant. It also helps to treat rheumatoid arthritis a condition where your immune system is reacting against your own body (autoimmune diseases).

What are the ingredients in IMURAN?

IMURAN tablets
Medicinal Ingredients: Azathioprine
Non-medicinal Ingredients: Lactose, magnesium stearate, microcrystalline cellulose and starch

IMURAN for injection
Medicinal Ingredients: Azathioprine (as azathioprine sodium)
Non-medicinal Ingredients: Sodium hydroxide (to adjust pH)

IMURAN comes in the following dosage forms:
Tablets: 50 mg
Powder for Solution: 50mg per vial

Do not use IMURAN if:
- You are allergic to azathioprine) or to any of the other ingredients in IMURAN (see “What are the ingredients in IMURAN” above)

To help avoid side effects and ensure proper use, talk to your healthcare professional before you
take IMURAN. Talk about any health conditions or problems you may have, including if:

- you have rheumatoid arthritis and have been previously treated with alkylating agents (such as cyclophosphamide, chlorambucil, melphalan or others)
- you suffer from liver or kidney disease
- you have been told you have any type of cancer
- you have a condition where your body produces too little of a natural chemical called thiopurine methyltransferase (TPMT)
- you have never had chickenpox or shingles
- you are going to have an operation. Medicines including tubocurarine, or succinylcholine that are used as muscle relaxants during surgery may interact with IMURAN). You should tell your doctor you are taking IMURAN before your surgery.
- you are pregnant. You should not take IMURAN while pregnant. It can cause harm to your unborn baby.
- you are planning to have a baby - discuss this with your doctor whether you are male or female
- you are breast feeding. The ingredient in IMURAN can be transferred through your breast milk.

Other warning you should know about:

General: If you are receiving immunosuppressive therapy, taking IMURAN could put you at a greater risk of developing certain types of cancers called lymphoproliferative disorders. These are cancers that affect the blood and immune system.

Exposure to Sunlight: Patients taking immunosuppressive medicines may have an increased risk for developing tumours, including skin cancer. While you are taking IMURAN, you should avoid too much exposure to sunlight. You should wear sunscreen with a high protections factor and wear protective clothing.

Use with other immunosuppressant, particularly corticosteroids: Patients taking IMURAN alone or in combination with other immunosuppressants, particularly corticosteroids are at a greater risk for infections.

Chickenpox or shingles: Infection with chickenpox or shingles can become severe in patients taking immunosuppressive medicines. You should therefore avoid contact with anyone who has chickenpox or shingles. Tell your doctor right away if you do come into contact with someone with chickenpox or shingles.

Gastrointestinal hypersensitivity: Severe nausea and vomiting have been reported in patients taking IMURAN.

Tell your healthcare professional about all the medicines you take, including any drugs, vitamins, minerals, natural supplements or alternative medicines.

The following may interact with IMURAN:

- angiotensin-converting enzyme inhibitors such as captopril (used to treat high blood pressure and heart failure)
- trimethoprim and sulfamethoxazole (used to treat bacterial infections). It is also known as SEPTRA®
- allopurinol, oxipurinol, thiopurinol (used to treat gout)
- curare, d-tubocurarine, tubocurarine, pancuronium and succinylcholine (used as a muscle relaxant during surgery)
- warfarin (used to prevent blood clots)
- mesalazine, olsalazine or sulphasalazine (used to treat ulcerative colitis)
How to take IMURAN:

IMURAN tablets:

Important Information: The tablets require safe handling. Consult your doctor or pharmacist for instructions on how to safely handle this product.

- It is important you take the tablets at right times.
- You must take it exactly the way your doctor has told you to
- Swallow the tablet **whole** with water. **Do NOT** break the tablet

IMURAN for injection:

- The injection should be given to you in the hospital by your doctor
- It will be given thorough your vein as an infusion (intravenous infusion)
- The amount you will be given will depend on the condition the doctor is treating
- Your doctor will tell you how long your treatment will last

Laboratory Tests: From time to time, while you are taking IMURAN, your doctor will want you to have a blood test. This is to check your blood cell count and to change your dose if necessary.

Usual Adult dose:

Kidney Transplant: A starting dose of up to 5 mg/kg of your bodyweight is usually given on the first day of therapy. You will then be given a maintenance dose of IMURAN. This is likely to be between 1 to 3 mg/kg bodyweight per day.

Rheumatoid Arthritis: If you are receiving IMURAN for rheumatoid arthritis the dose given is likely to start at approximately 1 mg/kg of your bodyweight. Depending on how your treatment is working, your dose may be adjusted, until an optimal maintenance dose is determined.

Overdose:

If you think you have taken too much IMURAN, contact your healthcare professional, hospital emergency department or regional Poison Control Centre immediately, even if there are no symptoms.

Missed Dose:

If you forget to take a dose, do not take extra tablets to make up for the dose or doses you have missed. When you remember take your next dose at the usual time and continue as before. Talk to your doctor as soon as you can about the doses you may have missed.

What are possible side effects from using IMURAN:

These are not all the possible side effects you may feel when taking IMURAN. If you experience any side effects not listed here, contact your healthcare professional.

Side effects include:

- hair loss. Often hair does grow again, even if you carry on taking IMURAN. If you are worried ask your doctor.
Serious Side Effects, How Often They Happen and What to Do About Them

<table>
<thead>
<tr>
<th>Symptom / Effect</th>
<th>Talk with your doctor or pharmacist</th>
<th>Stop taking drug and call your doctor or pharmacist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fever or infection after transplant</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>unexpected bruising or bleeding</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>nausea</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new marks on skin or a change to marks</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>cough or difficulty breathing similar to a chest infection</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>tired, dizzy or generally unwell</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>muscle or bone pain</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>kidney problems</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>feeling faint especially on standing up</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>bad diarrhoea and/or abdominal pain</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom / effect</th>
<th>Talk with your doctor or pharmacist</th>
<th>Stop taking drug and call your doctor or pharmacist</th>
</tr>
</thead>
<tbody>
<tr>
<td>fever and infection</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Serious Skin Reaction:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens-Johnson syndrome (SJS): flu-like symptoms, skin rash often with blister or lesions and shedding of the skin within days of the formation of the blisters</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Toxic epidermal necrolysis (TEN): flu-like symptoms, redness of the skin, detachment of the skin (epidermal layer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatosplenic T-cell lymphoma (enlargement of the liver)</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

If you have a troublesome symptom or side effect that is not listed here or becomes bad enough to interfere with your daily activities, talk to your healthcare professional.

REPORTING SUSPECTED SIDE EFFECTS

You can report any suspected side effects associated with the use of health products to Health Canada by:

- Visiting the Web page on Adverse Reaction Reporting (https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/adverse-reaction-reporting.html) for information on how to report online, by mail or by fax; or
- Calling toll-free at 1-866-234-2345.

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

Storage:

IMURAN Tablets:
- Store between 15°C and 30°C. Protect from light.
- Do not take the medicine after the expiry date shown on the package.
- If your doctor tells you to stop taking the tablets, return any left-over tablets to your pharmacy for proper disposal. Only keep them if your doctor tells you to.

IMURAN for Injection:
- Store between 15°C and 25°C. Protect from light.

Keep out of reach and sight of children.
If you want more information about IMURAN:

- Talk to your healthcare professional
- Find the full product monograph that is prepared for healthcare professionals and includes this Patient Medication Information by visiting the Health Canada website (https://health-products.canada.ca/dpd-bdpp/index-eng.jsp); the manufacturer's website www.aspenpharma.ca, or by calling 1-844-330-1213.

This leaflet was prepared by Aspen Pharmacare Canada Inc.

Last Revised: June 17, 2019