PRODUCT MONOGRAPH

ADEMPAS®

riociguat (film-coated) tablet

0.5 mg, 1 mg, 1.5 mg, 2 mg, 2.5 mg

Professed standard

Soluble Guanylate Cyclase (sGC) Stimulator

Bayer Inc.
2920 Matheson Boulevard East
Mississauga, Ontario
L4W 5R6
http://www.bayer.ca

Submission Control No: 226431

Date of Revision: March 31, 2020

© 2020, Bayer Inc.
® TM see www.bayer.ca/tm-mc

All other trademarks are the property of their respective owners.
TABLE OF CONTENTS

PART I: HEALTH PROFESSIONAL INFORMATION
- SUMMARY PRODUCT INFORMATION .. 3
- INDICATIONS AND CLINICAL USE ... 3
- CONTRAINDICATIONS .. 4
- WARNINGS AND PRECAUTIONS .. 4
- ADVERSE REACTIONS .. 7
- DRUG INTERACTIONS .. 11
- DOSAGE AND ADMINISTRATION .. 17
- OVERDOSAGE ... 19
- ACTION AND CLINICAL PHARMACOLOGY ... 19
- STORAGE AND STABILITY ... 21
- SPECIAL HANDLING INSTRUCTIONS ... 22
- DOSAGE FORMS, COMPOSITION AND PACKAGING 22

PART II: SCIENTIFIC INFORMATION
- PHARMACEUTICAL INFORMATION .. 23
- CLINICAL TRIALS ... 23
- DETAILED PHARMACOLOGY .. 33
- TOXICOLOGY ... 36
- REFERENCES ... 39

PART III: CONSUMER INFORMATION ... 40
Pr

ADEMPAS®

riociguat

PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

Table 1: Product Information Summary

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form, Strength</th>
<th>Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Film-coated tablet, 0.5 mg, 1 mg, 1.5 mg, 2 mg and 2.5 mg</td>
<td>cellulose microcrystalline, crospovidone, ferric oxide red, ferric oxide yellow, hydroxypropylcellulose, hypromellose 3cP, hypromellose 5cP, lactose monohydrate, magnesium stearate, propylene glycol, sodium laurilsulphate and titanium dioxide</td>
</tr>
</tbody>
</table>

This is a complete listing.

INDICATIONS AND CLINICAL USE

Pulmonary Hypertension

ADEMPAS (riociguat) is indicated for the treatment of:

- inoperable chronic thromboembolic pulmonary hypertension (CTEPH, WHO Group 4)
- persistent or recurrent CTEPH after surgical treatment
- pulmonary arterial hypertension (PAH, WHO Group 1), as monotherapy or in combination with endothelin receptor antagonists

in adult patients (≥18 years of age) with WHO Functional Class II or III pulmonary hypertension.

ADEMPAS should only be used by clinicians experienced in the diagnosis and treatment of CTEPH or PAH.

Pediatrics (<18 years of age)

Safety and effectiveness in pediatric patients have not been established (see WARNINGS AND PRECAUTIONS, Special Populations - Pediatrics).

Geriatrics (≥ 65 years of age)

Safety and effectiveness in geriatric patients up to 80 years of age have been established (see WARNINGS AND PRECAUTIONS, Special Populations - Geriatrics).
CONTRAINDICATIONS

- Concomitant use of ADEMPAS with other drugs affecting the nitric oxide-soluble guanylate cyclase- cyclic guanosine monophosphate (NO-sGC-cGMP) pathway is contraindicated, due to the risk of developing potentially life-threatening episodes of hypotension or syncope.

These drugs include:

- **Phosphodiesterase type 5 (PDE5)** inhibitors, such as sildenafil, tadalafil, vardenafil
- **Nitrates**, taken either regularly or intermittently, in any form (e.g. oral, sublingual, transdermal, by inhalation)
- **Nitric oxide donors**, such as amyl nitrite (See DRUG INTERACTIONS, Drug-Drug Interactions.)

- ADEMPAS is contraindicated during pregnancy and nursing (see WARNINGS AND PRECAUTIONS, Special Populations - Nursing Women and TOXICOLOGY, Reproductive Toxicology).
- Hypersensitivity to ADEMPAS or to any ingredient in the formulation (see DOSAGE FORMS, COMPOSITION AND PACKAGING).
- ADEMPAS is contraindicated in patients with pulmonary hypertension associated with idiopathic interstitial pneumonias (PH-IIP).

WARNINGS AND PRECAUTIONS

Hypotension

As a sGC stimulator, ADEMPAS acts as a vasodilator, lowering both pulmonary and systemic blood pressure. The demonstrated risk of hypotension should be carefully considered (see ADVERSE REACTIONS), in particular in patients with concomitant or underlying conditions such as low systemic blood pressure (e.g., systolic blood pressure < 95 mmHg), coronary artery disease (CAD), hypovolemia, resting hypotension, severe left ventricular outflow obstruction, autonomic dysfunction, as well as in patients on concomitant treatment with antihypertensives or strong CYP and P-gp/BCRP inhibitors (see WARNINGS and PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors).

Drugs Affecting the NO-sGC-cGMP Pathway

ADEMPAS and other drugs that result in increased levels of intracellular cGMP act as vasodilators. Additive or synergistic effects on systemic blood pressure should be anticipated. Concomitant use of PDE5-inhibitors, nitrates or nitric oxide donors is contraindicated (see CONTRAINDICATIONS).

Bleeding

In patients with pulmonary hypertension there is an increased likelihood of bleeding, particularly among patients receiving anticoagulation therapy. Bleeding risk should be carefully evaluated before initiating ADEMPAS therapy, and should be monitored periodically, particularly in
patients taking anticoagulants. The risk of serious and fatal bleeding, including respiratory tract bleeding, may be further increased under treatment with ADEMPAS, especially in the presence of risk factors, such as recent episodes of serious hemoptysis including those managed by bronchial arterial embolization. ADEMPAS should be avoided in patients with a history of serious hemoptysis or who have previously undergone bronchial arterial embolization.

In the placebo-controlled clinical trials program, serious bleeding occurred in 2.4% of patients taking ADEMPAS compared to 0% of placebo patients. Serious hemoptysis occurred in 5 (1%) patients taking ADEMPAS compared to 0 placebo patients, including one event with fatal outcome. Serious hemorrhagic events also included 2 patients with vaginal hemorrhage, 2 with catheter site hemorrhage, and 1 each with subdural hematoma, hematemesis, and intra-abdominal hemorrhage. In long-term extension studies, there was no evidence for temporal clustering of bleeding events throughout the period of treatment with ADEMPAS.

Patients should be instructed to notify the treating physician of any unexpected or excessive bleedings.

Pulmonary Veno-Occlusive Disease

Pulmonary vasodilators may significantly worsen the cardiovascular status of patients with pulmonary veno-occlusive disease (PVOD). Therefore, administration of ADEMPAS to such patients is not recommended. Should signs of pulmonary edema occur, the possibility of associated PVOD should be considered and treatment with ADEMPAS should be discontinued.

Concomitant Use with CYP or P-gp/BCRP Inhibitors

The concomitant use of ADEMPAS with strong multi pathway CYP and P-gp/BCRP inhibitors, such asazole antimycotics (eg, ketoconazole, itraconazole), or HIV protease inhibitors (eg, ritonavir) results in a pronounced increase in riociguat exposure (see DRUG INTERACTIONS, Drug-Drug Interactions), and may result in hypotension.

Assess the benefit-risk for each patient individually before prescribing ADEMPAS in patients on stable doses of strong multi pathway CYP and P-gp/BCRP inhibitors. Consider a starting dose of 0.5 mg ADEMPAS, three times a day to mitigate the risk of hypotension. Monitor for signs and symptoms of hypotension on initiation and on treatment and consider a dose reduction for patients on ADEMPAS doses higher than or equal to 1.0 mg if the patient develops signs or symptoms of hypotension (see DOSAGE AND ADMINISTRATION, Strong CYP and P-gp/BCRP Inhibitors and DRUG INTERACTIONS, Drug-Drug Interactions).

In patients on stable doses of ADEMPAS, the initiation of strong multi pathway CYP and P-gp/BCRP inhibitors is not recommended as no dosage recommendation can be given due to limited data. Alternative treatments should be considered.

The concomitant use of ADEMPAS with strong CYP1A1 inhibitors, such as the tyrosine kinase inhibitor erlotinib, or strong P-gp/BCRP inhibitors, such as the immunosuppressant cyclosporine A, may result in increased riociguat exposure (see DRUG INTERACTIONS, Drug-Drug Interactions). These drugs should be used with caution when co-administered with ADEMPAS. Blood pressure should be monitored and dose reduction of ADEMPAS might be considered.
Special Populations

ADEMPAS has not been studied in the following patient populations and its use is therefore not recommended in:

- Patients with systolic blood pressure <95 mm Hg at treatment initiation
- Patients with severe hepatic impairment (Child Pugh C)
- Patients with creatinine clearance <15 mL/min or on dialysis

Pediatrics

The safety and effectiveness of ADEMPAS in patients younger than 18 years of age has not been established in the CTEPH and PAH study programs. Thus, ADEMPAS is currently not indicated for use in patients < 18 years of age.

Geriatrics

Forty-three percent (43%) of the ADEMPAS-treated patients in the CTEPH and 26% of the ADEMPAS-treated patients in the PAH study programs were 65 to 80 years of age. In contrast to younger patients, dizziness and hypotension occurred more frequently in these older patients when treated with ADEMPAS, compared to same-aged patients on placebo. Dose titrations should be performed with caution in this age group.

Pregnancy/Fertility

There are no adequate data from the use of ADEMPAS in pregnant women. Studies in animals have shown reproductive toxicity (see TOXICOLOGY, Reproductive Toxicology). Therefore, ADEMPAS is contraindicated in females who are or may become pregnant (see CONTRAINDICATIONS). Women of childbearing potential should be advised to use effective contraception during treatment with ADEMPAS.

No specific studies with ADEMPAS in humans have been conducted to evaluate effects on fertility. In studies that evaluated male and female fertility in rats, no effects were seen with riociguat up to 5.1 times human exposure when corrected for species differences in protein binding, whereas its main metabolite produced a slight decrease in implantation rate at systemic exposure comparable to human systemic exposure (see TOXICOLOGY, Reproductive Toxicology).

Nursing Women

No data on the use of ADEMPAS in breast-feeding women are available. Data from animals indicate that ADEMPAS is excreted into milk.

Because of the potential for serious adverse reactions in nursing infants, the use of ADEMPAS during breast-feeding is contraindicated (see CONTRAINDICATIONS). A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from therapy, taking into account the importance of the drug for the mother.
Effect of Cigarette Smoking

In cigarette smokers, riociguat exposure is reduced by 50 to 60% (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics - Metabolism). Therefore patients are advised to stop smoking. Dose adjustment of ADEMPAS may be required in patients who stop or start smoking during treatment (see DOSAGE AND ADMINISTRATION, Smoking Status).

Effects on Ability to Drive or Use Machines

Dizziness has been reported and may affect the ability to drive and use machines. Patients should be aware of how they react to ADEMPAS, before driving or operating machinery.

ADVERSE REACTIONS

Adverse Drug Reaction Overview

Serious hemoptysis and pulmonary hemorrhage, including cases with fatal outcome have been observed in patients with CTEPH or PAH treated with ADEMPAS (see WARNINGS AND PRECAUTIONS, Bleeding).

The most commonly reported adverse reactions, occurring in ≥10% of patients under ADEMPAS treatment (up to 2.5 mg tid) were headache, dizziness, dyspepsia, peripheral edema, nausea, diarrhea, and vomiting.

Clinical Trial Adverse Drug Reactions

Because clinical trials are conducted under very specific conditions the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse drug reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

The safety of ADEMPAS has been evaluated in Phase III trials of more than 650 patients with CTEPH or PAH receiving at least 1 dose of ADEMPAS (see PART II: SCIENTIFIC INFORMATION, CLINICAL TRIALS).

The overall rates of discontinuation due to an adverse event (AE) in these pooled pivotal placebo-controlled trials were 2.9% for ADEMPAS, and 5.1% for placebo.

Since ADEMPAS is a vasodilator, common to very common AEs in the pooled Phase III trials were dizziness, (pre)syncope and hypotension.

Dizziness occurred in 19.8% of patients on riociguat, compared to 13.1% of the placebo patients (see Table 4).

Hypotensive events occurred as AEs in 49 (10%) of the patients on riociguat - in 2 cases as a non-fatal SAE - and in 8 (3.7%) of the patients on placebo; in no case as an SAE (see Table 4).

Bleeding events were very common in the riociguat-treated patients in the pooled Phase III trials. Idiopathic bleeding events, i.e., events not caused by procedures, were observed in 58 (11.8%) of the riociguat-treated patients, of which 10 cases were noted as SAEs, 1 of which was fatal. In the
placebo groups, 18 (8.4%) idiopathic bleeding events were observed, none as an SAE (see Table 4).

Anemia occurred commonly in the pooled Phase III trials. Anemia (or respective changes in laboratory values) reported as an AE was noted in 33 (6.7%) of the patients on riociguat, in 2 of these cases as an SAE. Anemia occurred in 5 (2.3%) of the patients on placebo, once as an SAE (see Table 4).

Table 2: Treatment-Emergent Adverse Reactions Reported by ≥1% of Patients Treated with ADEMPAS (CHEST-1 data)

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>ADEMPAS % (n=173)</th>
<th>Placebo % (n=88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and Infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>2.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Blood and the lymphatic system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding (incl. epistaxis and hemoptysis)</td>
<td>12.7</td>
<td>9.1</td>
</tr>
<tr>
<td>Anemia (incl. respective laboratory parameters)</td>
<td>4.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>24.9</td>
<td>13.6</td>
</tr>
<tr>
<td>Dizziness</td>
<td>23.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitations</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension (incl. blood pressure decreased)</td>
<td>11.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal congestion</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspepsia (incl. epigastric discomfort and eructation)</td>
<td>18.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Nausea</td>
<td>11.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Vomiting</td>
<td>9.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Gastrointestinal and abdominal pains</td>
<td>9.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Gastrooesophageal reflux disease</td>
<td>4.0</td>
<td>0</td>
</tr>
<tr>
<td>Constipation</td>
<td>5.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Gastritis</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edema peripheral</td>
<td>15.6</td>
<td>20.5</td>
</tr>
</tbody>
</table>
Table 3: Treatment-Emergent Adverse Reactions Reported by ≥1% of Patients Treated with ADEMPAS (PATENT-1 data)*

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>ADEMPAS % (n=317)</th>
<th>Placebo % (n=126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and Infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>2.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Blood and the lymphatic system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding (incl. epistaxis and hemoptysis)</td>
<td>11.4</td>
<td>7.9</td>
</tr>
<tr>
<td>Anemia (incl. respective laboratory parameters)</td>
<td>7.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>28.1</td>
<td>20.6</td>
</tr>
<tr>
<td>Dizziness</td>
<td>18.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitations</td>
<td>7.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension (incl. blood pressure decreased)</td>
<td>9.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal congestion</td>
<td>4.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspepsia (incl. epigastric discomfort and eructation)</td>
<td>18.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Nausea</td>
<td>15.8</td>
<td>12.7</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>13.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10.4</td>
<td>8.7</td>
</tr>
<tr>
<td>Gastrointestinal and abdominal pains</td>
<td>9.1</td>
<td>7.9</td>
</tr>
<tr>
<td>Gastrooesophageal reflux disease</td>
<td>5.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Constipation</td>
<td>3.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Gastritis</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>1.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>2.5</td>
<td>0.8</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>18.3</td>
<td>11.1</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Pooled data from the Individual Dose Titration Group (1 to 2.5 mg tid) and the Capped Dose Group (1 to 1.5 mg tid)
Table 4: Treatment-Emergent Adverse Reactions Reported by ≥1% of Patients Treated with ADEMPAS (pooled CHEST-1 and PATENT-1 data)

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>ADEMPAS % (n=490)</th>
<th>Placebo % (n=214)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>2.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Blood and the lymphatic system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding (incl. epistaxis and hemoptysis)</td>
<td>11.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Anemia (incl. respective laboratory parameters)</td>
<td>6.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>26.9</td>
<td>17.8</td>
</tr>
<tr>
<td>Dizziness</td>
<td>19.8</td>
<td>13.1</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitations</td>
<td>6.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>10.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>4.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Nasal congestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>18.6</td>
<td>8.4</td>
</tr>
<tr>
<td>Nausea</td>
<td>14.1</td>
<td>10.7</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>12.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10.2</td>
<td>6.5</td>
</tr>
<tr>
<td>Gastrointestinal and abdominal pains</td>
<td>9.4</td>
<td>7.0</td>
</tr>
<tr>
<td>Gastroesophageal reflux disease</td>
<td>5.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Constipation</td>
<td>4.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Gastritis</td>
<td>2.9</td>
<td>0</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>17.3</td>
<td>15.0</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Less Common Clinical Trial Adverse Drug Reactions

Pulmonary hemorrhage was reported in ≤1% of patients treated during the long term extension studies with ADEMPAS.

Abnormal Hematologic and Clinical Chemistry Findings

Treatment-emergent values below the lower limit of normal for erythrocytes, hematocrit, and hemoglobin were observed more frequently in the riociguat group than in the placebo group.

In a pooled analysis of placebo-controlled Phase III studies in patients with CTEPH or PAH, changes from baseline in mean hemoglobin (-0.58 g/dL vs. 0.13 g/dL) and hematocrit (-1.66% vs. 0.45%) were observed in patients receiving ADEMPAS or placebo, respectively. Decreases in hemoglobin (24.1% vs. 9.1%) and hematocrit (13.3% vs. 4.9%) were observed in patients receiving ADEMPAS and placebo, respectively. Anemia had a higher rate in the ADEMPAS group (6.7%) compared to placebo (2.3%).

Mean changes in group values from baseline were small for most of the clinical chemistry parameters in the pooled controlled Phase III studies.
DRUG INTERACTIONS

Overview

Effects of Other Substances on Riociguat

ADEMPAS is cleared mainly via biliary/direct fecal excretion of the unchanged drug, and renal excretion of the unchanged drug via glomerular filtration. ADEMPAS is mainly catalysed to its main metabolite M1 by several CYP isoforms (CYP1A1, CYP2J2, CYP3A4, CYP3A5). Based on in vitro studies, riociguat was found to be a substrate for the membrane transport proteins P-gp/BCRP. Inhibitors or inducers of these enzymes or transporters may affect riociguat exposure.

Riociguat exhibits a reduced solubility at neutral pH vs. acidic medium. Co-medication of drugs increasing the upper gastro-intestinal pH may lead to lower oral bioavailability.

Effects of Riociguat on Other Substances

Riociguat and its main metabolite are neither inhibitors nor inducers of major CYP isoforms (including CYP3A4) or transporters (eg, P-gp/BCRP) in vitro at therapeutic plasma concentrations.

Patients must not get pregnant during ADEMPAS therapy (see CONTRAINDICATIONS). Riociguat (2.5 mg three times per day) did not have a clinically meaningful effect on the exposure of combined oral contraceptives containing levonorgestrel and ethinyl estradiol when concomitantly administered to healthy female subjects.

Riociguat and its main metabolite revealed to be strong inhibitors of CYP1A1 in vitro. Therefore, clinically relevant drug-drug interactions with co-medications which are significantly cleared by CYP1A1-mediated biotransformation, such as erlotinib or granisetron, cannot be ruled out.

Drug-Drug Interactions

Table 5: Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Ref</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrates</td>
<td>CT</td>
<td>ADEMPAS 2.5 mg tablets potentiated the blood pressure lowering effect of sublingual nitroglycerin (0.4 mg) taken 4 and 8 hours after intake.</td>
<td>Coadministration of ADEMPAS with nitrates or nitric oxide donors (such as amyl nitrite) in any form is contraindicated (see CONTRAINDICATIONS)</td>
</tr>
</tbody>
</table>
Table 5: Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Ref</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE5 inhibitors: - Sildenafil - Tadalafil - Vardenafil</td>
<td>CT</td>
<td>Studies in animal models showed additive systemic blood pressure lowering effect when ADEMPAS was combined with either sildenafil or vardenafil. With increased doses, over additive effects on systemic blood pressure were observed in some cases. In an exploratory interaction study in 7 patients with PAH on stable sildenafil treatment (20 mg three times daily) single doses of ADEMPAS (0.5 mg and 1 mg sequentially) showed additive hemodynamic effects, but no pharmacodynamic advantages. Doses above 1 mg ADEMPAS were not investigated in this study. A 12-week combination study in 18 patients with PAH on stable sildenafil treatment (20 mg three times daily) and ADEMPAS (1 mg-2.5 mg three times daily) compared to sildenafil alone was performed. In the long-term extension part (non-controlled) the concomitant use of sildenafil and ADEMPAS resulted in a high rate of discontinuation, predominately due to hypotension. There was no evidence of a favorable clinical effect of the combination in the population studied.</td>
<td>Concomitant administration of ADEMPAS with PDE5 inhibitors (such as sildenafil, tadalafil, vardenafil) is contraindicated (see CONTRAINDICATIONS). For information on transitioning between ADEMPAS and PDE5 inhibitors (ie, tadalafil and sildenafil) see DOSAGE AND ADMINISTRATION, Transitioning between PDE5 inhibitors and Riociguat.</td>
</tr>
</tbody>
</table>

ADEMPAS
Table 5: Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Ref</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antifungal Agents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ketoconazoles</td>
<td></td>
<td>Concomitant administration of 400 mg once daily</td>
<td>Due to limited clinical experience, ADEMPAS and multi pathway CYP or P-gp/BCRP inhibitors should be co-administered with caution.</td>
</tr>
<tr>
<td>- Clotrimazole</td>
<td></td>
<td>Ketoconazole led to a 150% (range up to 370%) increase in riociguat mean AUC and a 46% increase in mean C<sub>max</sub>. Terminal half-life increased from 7.3 to 9.2 hours and total body clearance decreased from 6.1 to 2.4 L/h.</td>
<td>When initiating ADEMPAS therapy in patients on stable doses of strong multi pathway CYP and P-gp/BCRP inhibitors, e.g. ketoconazole or itraconazole, consider a starting dose of 0.5 mg riociguat, three times a day to mitigate the risk of hypotension. Monitor for signs and symptoms of hypotension on initiation and on treatment. Consider a dose reduction for patients on ADEMPAS doses higher than or equal to 1.0 mg if the patient develops signs or symptoms of hypotension (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors).</td>
</tr>
<tr>
<td>- Itraconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Miconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vitro, riociguat main metabolite M1 formation in human liver microsomes was also inhibited by the antifungal agents (ketoconazole > miconazole > clotrimazole, IC<sub>50</sub> values of 0.6 to 5.7 µM).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoconazole and itraconazole showed inhibitory potency on P-gp/BCRP mediated efflux of riociguat in vitro (ketoconazole [I<sub>1</sub>]/IC<sub>50</sub>: 0.01, [I<sub>2</sub>]/IC<sub>50</sub> >10; itraconazole [I<sub>1</sub>]/IC<sub>50</sub>: 0.3; [I<sub>2</sub>]/IC<sub>50</sub> >10).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Ref</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly active antiretroviral therapy (HAART) including HIV protease inhibitors</td>
<td>I, CT</td>
<td>In vitro, abacavir, rilpivirine, efavirenz, ritonavir, cobicistat and elvitegravir inhibited CYP1A1 and the metabolism of riociguat in the order listed with abacavir as the strongest inhibitor. Cobicistat, ritonavir, atazanavir and darunavir are additionally classified as CYP3A inhibitors. In vitro, riociguat main metabolite M1 formation in human liver microsomes was considerably inhibited by HIV protease inhibitors (ritonavir, atazanavir > indinavir, IC₅₀ values of 5.3 to 11.7 µM). Ritonavir and saquinavir showed inhibitory potency on P-gp/BCRP mediated efflux of riociguat in vitro ([I₁]/IC₅₀ >0.1 or [I₂]/IC₅₀>10). The impact of HAART (including different combinations of abacavir, atazanavir, cobicistat, darunavir, dolutegravir, efavirenz, elvitegravir, emtricitabine, lamivudine, rilpivirine, ritonavir, and tenofovir) on riociguat exposure was investigated in a pharmacokinetic drug-drug interaction study with HIV non-PAH patients. Concomitant administration of a stable regimen of varying HAART combinations with a single 0.5 mg dose of ADEMPAS led to an increase in ADEMPAS mean AUC and Cmax of up to about 160% and 29%, respectively in HIV non-PAH patients compared to a healthy historical control group. No new safety findings were observed in this single dose study. Due to limited clinical experience, ADEMPAS and multi pathway CYP or P-gp/BCRP inhibitors should be co-administered with caution. When initiating ADEMPAS treatment in patients on stable doses of strong multi pathway CYP and P-gp/BCRP inhibitors, e.g. as contained in HAART therapy, consider a starting dose of 0.5 mg riociguat, three times a day to mitigate the risk of hypotension. Monitor for signs and symptoms of hypotension on initiation and on treatment. Consider a dose reduction for patients on ADEMPAS doses higher than or equal to 1.0 mg if the patient develops signs or symptoms of hypotension (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors). In patients on stable doses of ADEMPAS, the initiation of strong multi pathway CYP and P-gp/BCRP inhibitors is not recommended as no dosage recommendation can be given due to limited data. Alternative treatments should be considered.</td>
<td></td>
</tr>
<tr>
<td>Cyclosporine A</td>
<td>1</td>
<td>Based on in vitro studies, cyclosporine A inhibited efflux of riociguat mediated by the membrane transport proteins P-gp/BCRP (IC₅₀: 4 µM; [I₁]/IC₅₀ < 0.1, [I₂]/IC₅₀ > 10, respectively). Drugs strongly inhibiting P-gp/BCRP, such as cyclosporine A, should be used with caution (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors). Blood pressure should be monitored, and dose reduction of ADEMPAS should be considered.</td>
<td></td>
</tr>
<tr>
<td>Proper Name</td>
<td>Ref</td>
<td>Effect</td>
<td>Clinical Comment</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Quinidine</td>
<td>I</td>
<td>Quinidine inhibited P-gp/BCRP mediated efflux of riociguat (IC\textsubscript{50}: 19 µM, [I\textsubscript{1}]/IC\textsubscript{50}: 0.12, [I\textsubscript{2}]/IC\textsubscript{50}: 105 for P-gp, and IC\textsubscript{50}: 300 µM, [I\textsubscript{1}]/IC\textsubscript{50}: 0.01, [I\textsubscript{2}]/IC\textsubscript{50}: 16 for BCRP, respectively).</td>
<td>Drugs strongly inhibiting P-gp/BCRP should be used with caution (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors). Blood pressure should be monitored, and dose reduction of ADEMPAS should be considered.</td>
</tr>
<tr>
<td>Tyrosine kinase inhibitors</td>
<td>I, T</td>
<td>In \textit{vitro}, pronounced inhibition of recombinant human CYP1A1 by tyrosine kinase inhibitors (e.g., erlotinib, gefitinib, imatinib, sorafenib and sunitinib) was observed (IC\textsubscript{50} values: 0.2 to 4.2 µM), and the tyrosine kinase inhibitors also affected the M1 formation in human liver microsomes (IC\textsubscript{50} values: 6.9 to 20.1 µM).</td>
<td>Strong CYP1A1 inhibitors should be used with caution (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors). Blood pressure should be monitored, and dose reduction of ADEMPAS should be considered.</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>I, T</td>
<td>In \textit{vitro}, pronounced inhibition of recombinant human CYP1A1 was observed (IC\textsubscript{50} value: 0.7 µM); M1 formation in human liver microsomes was also affected (IC\textsubscript{50} value: 11 µM).</td>
<td>Strong CYP1A1 inhibitors should be used with caution (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors). Blood pressure should be monitored, and dose reduction of ADEMPAS should be considered.</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>CT</td>
<td>Co-administration of \textbf{clarithromycin} (500 mg twice daily), classified as strong and selective CYP3A4 inhibitor and also reported to be a weak-to-moderate P-gp inhibitor, moderately increased mean AUC by 41% without significant change in C\textsubscript{max}. This is not considered clinically relevant.</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>\textbf{H}^+, \textbf{K}^+-\textbf{ATPase} (proton pump) inhibitor</td>
<td>CT, I</td>
<td>Pre- and co-treatment with the proton pump inhibitor \textbf{omeprazole} (40 mg once daily) reduced riociguat mean AUC by 26% and mean C\textsubscript{max} by 35% in healthy volunteers. This is due to increased gastric pH by omeprazole as anticipated from \textit{in vitro} solubility data. Riociguat exhibits a reduced solubility at neutral pH vs. acidic medium \textit{in vitro}. Pantoprazole reduced the BCRP mediated efflux of riociguat concentration dependent with an IC\textsubscript{50} of 4.0 µM ([I\textsubscript{1}]/IC\textsubscript{50}: 1.5, [I\textsubscript{2}]/IC\textsubscript{50}: 100).</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>Aluminum hydroxide/ magnesium hydroxide</td>
<td>CT</td>
<td>Co-administration of the antacid \textbf{aluminum hydroxide} / \textbf{magnesium hydroxide} reduced riociguat mean AUC by 34% and mean C\textsubscript{max} by 56% (see DOSAGE AND ADMINISTRATION).</td>
<td>Antacids should be taken at least 1 hour after ADEMPAS.</td>
</tr>
</tbody>
</table>
Table 5: Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Ref</th>
<th>Effect</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>I</td>
<td>Amiodarone inhibited P-gp mediated transport of riociguat across L-MDR1 cells (IC\textsubscript{50}: 4.3 μM, [I\textsubscript{2}]/IC\textsubscript{50}: 277). Amiodarone showed a weak inhibition of the recombinant human CYP1A1 mediated M-1 formation with IC\textsubscript{50} value of 4.9 μM.</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>Bosentan</td>
<td>CT</td>
<td>Bosentan, reported to be a moderate inducer of CYP3A4, led to a decrease of riociguat steady-state plasma concentrations in PAH patients by 27% without compromising the efficacy of the combination.</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>Phenytoin, Carbamazepine, Phenobarbitone, St. John’s Wort</td>
<td>CT</td>
<td>The concomitant use of ADEMPAS with strong CYP3A4 inducers (eg, phenytoin, carbamazepine, phenobarbitone, or St. John’s Wort) may also lead to decreased riociguat plasma concentration.</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>Verapamil</td>
<td>I</td>
<td>Verapamil inhibited P-gp mediated transport of riociguat across L-MDR1 cells (IC\textsubscript{50}: 3.3 μM, [I\textsubscript{2}]/IC\textsubscript{50}: 92).</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>Warfarin/ Phenprocoumon</td>
<td>CT</td>
<td>Concomitant treatment with ADEMPAS and warfarin did not alter prothrombin time induced by the anticoagulant. The concomitant use of ADEMPAS with other coumarin-derivates (eg, phenprocoumon) is also not expected to alter prothrombin time. Lack of mutual pharmacokinetic interactions between riociguat and the CYP2C9 substrate warfarin was demonstrated in vivo.</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>Acetylsalicylic Acid (ASA)</td>
<td>CT</td>
<td>Riociguat did neither potentiate the bleeding time caused by acetylsalicylic acid nor affect the platelet aggregation in humans.</td>
<td>No dose adjustment required.</td>
</tr>
<tr>
<td>UGT1A1, UGT1A9 inhibitors</td>
<td>I,T</td>
<td>UGT1A1 and 1A9 are involved in the N-glucuronidation of metabolite M1 to M4. In vitro, the UGT1A1 inhibitor atazanavir, considerably reduced the M4 formation. In addition, the UGT1A9 inhibitor niflumic acid, inhibited the N-glucuronidation of M1. Thus, UGT1A1 and 1A9 inhibitors may potentially increase the exposure of M1, which is pharmacologically active (pharmacological activity: 1/10th to 1/3rd of riociguat). Drugs strongly inhibiting UGT1A1 and/or UGT1A9 should be used with caution. Blood pressure should be monitored, and dose reduction of ADEMPAS should be considered. Concomitant use with atazanavir is not recommended (see HIV protease inhibitors in this table).</td>
<td></td>
</tr>
</tbody>
</table>

Legend: CT=Clinical Trial; I=*In Vitro* T=Theoretical

[I\textsubscript{1}]: maximum steady-state inhibitor systemic concentration

[I\textsubscript{2}]: hypothetical intestinal concentration (highest dose/250 mL)
Drug-Food Interactions
No clinically relevant interaction with food was observed (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics).

Drug-Lifestyle Interactions
In cigarette smokers riociguat exposure is reduced by 50 to 60% (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics - Metabolism). Therefore patients are advised to stop smoking (see DOSAGE AND ADMINISTRATION, Smoking Status). Dose adjustment of ADEMPAS may be required in patients who stop or start smoking during treatment.

DOSAGE AND ADMINISTRATION

Dosing Considerations
Treatment should only be initiated and monitored under the supervision of a clinician experienced in the diagnosis and treatment of CTEPH or PAH.

Recommended Dose and Dosage Adjustment

Treatment Initiation
The recommended starting dose of ADEMPAS is 1 mg 3 times daily for 2 weeks. Tablets should be taken 3 times daily approximately 6 to 8 hours apart, with or without food. A lower starting dose of 0.5 mg 3 times daily may be used at the discretion of the physician to minimize the potential of hypotensive events.

Dosage should be increased in 2-week intervals by 0.5 mg increments to a maximum of 2.5 mg 3 times daily, if systolic blood pressure is ≥95 mmHg and the patient has no signs or symptoms of hypotension. If systolic blood pressure falls below 95 mmHg, dosage should be maintained provided the patient does not show any signs or symptoms of hypotension. If, at any time during the up-titration phase, systolic blood pressure decreases below 95 mmHg, and the patient shows signs or symptoms of hypotension, the next 3 doses should be withheld and dosing should be restarted, decreased by 0.5 mg tid, 24 hours later, as clinically warranted.

Maintenance Dose
The established individual dose should be maintained unless signs and symptoms of hypotension occur. The maximum total daily dose of ADEMPAS is 7.5 mg.

If not tolerated, dose reduction might be considered at any time.

Missed Dose
If a dose is missed, treatment should be continued with the next dose as planned.

Treatment Discontinuation
In case treatment has to be interrupted for 3 days or more, restart treatment at the starting dose 3 times daily for 2 weeks, and continue dose titration regimen as described above.
Transitioning between PDE5 inhibitors and Riociguat

Discontinue sildenafil at least 24 hours or tadalafil at least 48 hours prior to administering riociguat. Begin treatment with ADEMPAS as normally recommended (see Recommended Dose and Dosage Adjustment- Treatment Initiation). Discontinue ADEMPAS at least 24 hours prior to administering a PDE5 inhibitor. It is recommended to monitor for signs and symptoms of hypotension after any transition (see CONTRAINDICATIONS and Drug-Drug Interactions).

A 24-week, uncontrolled study investigated the transition from PDE5 inhibitors, sildenafil or tadalafil, to ADEMPAS, in 61 adult PAH patients stable on PDE5 inhibitors. All patients were WHO Functional Class III and 82% received background therapy with an endothelin receptor antagonist (ERA). All patients in the study were transitioned from sildenafil (up to 80 mg tid) or tadalafil (up to 40 mg od) to 1 mg tid ADEMPAS (median treatment-free washout period of 1 day for sildenafil and 3 days for tadalafil). Overall, the safety profile observed in the study was comparable with that observed in the pivotal trials, with no serious adverse events reported during the transition period. Six patients (10%) experienced at least one clinical worsening event, including 2 deaths unrelated to study drug.

Geriatrics (≥65 years of age)

Elderly (≥65 years) patients exhibited higher plasma concentrations than younger patients. Particular care should be exercised during individual dose titration (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics - Special Populations and Conditions: Geriatrics).

Pediatrics

ADEMPAS is not recommended for use in pediatrics.

Hepatic Impairment

Particular care should be exercised during individual dose titration in patients with moderate hepatic impairment (Child Pugh B) (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics – Special Populations and Conditions: Hepatic Insufficiency).

ADEMPAS is not recommended in patients with severe hepatic impairment (Child Pugh C) (see WARNINGS AND PRECAUTIONS, Special Populations).

Renal Impairment

Particular care should be exercised during individual dose titration in patients with mild, moderate, or severe renal impairment (creatinine clearance 15 to 80 mL/min) (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics – Special Populations and Conditions: Renal Insufficiency).

ADEMPAS is not recommended in patients with creatinine clearance <15 mL/min or on dialysis (see WARNINGS AND PRECAUTIONS, Special Populations).
Smoking Status
Current smokers should be advised to stop smoking. Plasma concentrations of riociguat in smokers are reduced compared to non-smokers. Dose adjustment of ADEMPAS may be required in patients who stop or start smoking during treatment (see DRUG INTERACTIONS, Overview and ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics - Metabolism).

Concomitant Use with Antacids
Antacids should be taken at least 1 hour after ADEMPAS (see DRUG INTERACTIONS, Drug-Drug Interactions).

Strong CYP and P-gp/BCRP Inhibitors
Coadministration of ADEMPAS with strong multipathway CYP and P-gp/BCRP inhibitors such as azole antimycotics (e.g. ketoconazole, itraconazole) or HIV protease inhibitors (e.g. ritonavir) increases exposure to ADEMPAS (see DRUG INTERACTIONS, Drug-Drug Interactions). Consider a starting dose of 0.5 mg, three times a day when initiating ADEMPAS in patients on stable doses of strong multipathway CYP and P-gp/BCRP inhibitors to mitigate risk of hypotension. Monitor for signs and symptoms of hypotension on initiation and on treatment with strong multipathway CYP and P-gp/BCRP inhibitors. Consider a dose reduction for patients on ADEMPAS doses higher than or equal to 1.0 mg if the patient develops signs or symptoms of hypotension (see WARNINGS AND PRECAUTIONS, Concomitant Use with CYP or P-gp/BCRP Inhibitors and DRUG INTERACTIONS, Drug-Drug Interactions).

OVERDOSAGE
For management of suspected drug overdose, contact your regional Poison Control Centre.

Inadvertent overdosing with total daily doses of 9 to 25 mg ADEMPAS between 2 to 32 days was reported. Adverse reactions were similar to those seen at lower doses (see ADVERSE REACTIONS).

No specific antidote is available.

In case of overdose, standard supportive measures should be adopted as required.

In case of pronounced hypotension, active cardiovascular support may be required.

Based on the high plasma protein binding riociguat is not expected to be dialyzable.

ACTION AND CLINICAL PHARMACOLOGY

Mechanism of Action
ADEMPAS is a stimulator of the soluble guanylate cyclase (sGC), an enzyme found in most mammalian cells including those of the cardiopulmonary system. sGC is also the receptor for nitric oxide (NO).
Pharmacodynamics
There is a direct relationship between riociguat plasma concentration and hemodynamic parameters such as systemic and pulmonary vascular resistance, systolic blood pressure, and cardiac output.

Pharmacokinetics

<table>
<thead>
<tr>
<th></th>
<th>C<sub>max</sub> (µg/L)</th>
<th>t<sub>1/2</sub> (h)</th>
<th>AUC<sub>-7/8</sub> (µg·h/L)</th>
<th>Clearance/F (L/h)</th>
<th>C-trough (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Dose Studies</td>
<td>119</td>
<td>11.7</td>
<td>1411</td>
<td>1.77</td>
<td>72.6</td>
</tr>
<tr>
<td>Multiple Dose Studies</td>
<td>203</td>
<td>11.8</td>
<td>1387</td>
<td>1.68</td>
<td>137</td>
</tr>
</tbody>
</table>

Absorption
The absolute bioavailability of riociguat is high (94%). Riociguat is rapidly absorbed with maximum concentrations (C_{max}) appearing 1 to 1.5 hours after tablet intake.

Intake with food does not affect riociguat AUC. C_{max} was reduced to a minor extent (35% lowering). Therefore, riociguat can be taken with or without food.

Distribution
Plasma protein binding in humans is high at approximately 95%, with serum albumin and α1-acidic glycoprotein being the main binding components.

Metabolism
N-demethylation, catalyzed by CYP1A1, CYP3A4, CYP3A5, and CYP2J2, is the major biotransformation pathway of riociguat leading to its major circulating active metabolite M1 (pharmacological activity: 1/10th to 1/3rd of riociguat) which is further metabolized to the pharmacologically inactive N-glucuronide.

CYP1A1 catalyzes the formation of riociguat’s main metabolite in liver and lungs and is known to be inducible by polycyclic aromatic hydrocarbons, for instance, present in cigarette smoke.

Excretion
Total riociguat (parent compound and metabolites) is excreted via both renal (33 to 45%) and biliary/fecal routes (48 to 59%). Four to 19% of the administered dose is excreted as unchanged riociguat via the kidneys, and 9 to 44% of the administered dose is found as unchanged riociguat in feces.

Linearity / Non-linearity
Riociguat pharmacokinetics is linear from 0.5 to 2.5 mg.

In pulmonary hypertension patients, inter-individual variability (CV%) of riociguat exposure (AUC) across all doses is approximately 60%. The intra-individual variability is considerably lower with 35% for riociguat trough plasma concentration (C_{trough}).
Special Populations and Conditions

Geriatrics
Elderly patients (≥65 years) exhibited higher plasma concentrations than younger patients, with mean AUC values being approximately 40% higher in elderly, mainly due to reduced (apparent) total and renal clearance (see DOSAGE AND ADMINISTRATION, Geriatrics (≥65 years of age)).

Hepatic Insufficiency
There was no clinically relevant change in exposure in cirrhotic subjects with mild-hepatic impairment (classified as Child Pugh A).

In cirrhotic subjects with moderate hepatic impairment (classified as Child Pugh B), riociguat mean AUC was increased by 50 to 70% compared to healthy controls (see DOSAGE AND ADMINISTRATION, Hepatic Impairment).

There are no data in patients with severe hepatic impairment (classified as Child Pugh C), and, therefore, the use of ADEMPAS is not recommended in these patients (see WARNINGS AND PRECAUTIONS, Special Populations and DOSAGE AND ADMINISTRATION, Hepatic Impairment).

Renal Insufficiency
Overall, mean dose- and weight- normalized exposure values for riociguat were higher in subjects with renal impairment compared to subjects with normal renal function. Corresponding values for the main metabolite were higher in subjects with renal impairment compared to healthy subjects. In individuals with mild (creatinine clearance 50 to 80 mL/min), moderate (creatinine clearance 30 to <50 mL/min) or severe (creatinine clearance <30 mL/min) renal impairment, riociguat plasma concentrations (AUC) were increased by 43%, 104%, or 44%, respectively (see DOSAGE AND ADMINISTRATION, Renal Impairment).

There are no data in patients with creatinine clearance <15 mL/min or on dialysis. Therefore use is not recommended in patients with creatinine clearance <15 mL/min or on dialysis (see WARNINGS AND PRECAUTIONS, Special Population and DOSAGE AND ADMINISTRATION, Renal Impairment).

Due to the high plasma protein binding riociguat is not expected to be dialyzable.

Gender, Ethnicity, Weight Categories
Pharmacokinetic studies revealed no relevant differences due to gender, ethnicity or weight in the exposure to riociguat.

STORAGE AND STABILITY
ADEMPAS should be stored at room temperature between 15°C to 30°C.
SPECIAL HANDLING INSTRUCTIONS
There are no special handling requirements for ADEMPAS.

DOSAGE FORMS, COMPOSITION AND PACKAGING¹
ADEMPAS is available as 0.5 mg, 1 mg, 1.5 mg, 2 mg, and 2.5 mg tablets for oral administration containing the following inactive ingredients: cellulose microcrystalline, crospovidone, hypromellose 5cP, lactose monohydrate, magnesium stearate, sodium laurilsulphate. The film-coating contains the following inactive ingredients hydroxypropylcellulose, hypromellose 3cP, propylene glycol, titanium dioxide. ADEMPAS 1 mg, 1.5 mg, 2 mg and 2.5 mg tablets contain in addition ferric oxide yellow and ADEMPAS 2 mg and 2.5 mg tablets contain in addition ferric oxide red.

ADEMPAS tablets are film-coated, round, and marked with the Bayer cross on one side:
- 0.5 mg white tablets marked with “0.5” and an “R” on the other side.
- 1 mg pale yellow tablets marked with “1” and an “R” on the other side.
- 1.5 mg yellow-orange tablets marked with “1.5” and an “R” on the other side.
- 2 mg pale orange tablets marked with “2” and an “R” on the other side.
- 2.5 mg red-orange tablets marked with “2.5” and an “R” on the other side.

ADEMPAS 0.5 mg, 1 mg, 1.5 mg, 2 mg, and 2.5 mg tablets are supplied in HDPE bottles of 42 and 90 and in blisters of 42.

¹ Not all presentations may be available in Canada.
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substance

Proper name: Riociguat
Chemical name: Methyl 4,6-diamino-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-pyrimidinyl(methyl)carbamate
Molecular formula: C$_{20}$H$_{19}$FN$_8$O$_2$
Molecular weight: 422.42
Structural formula:

\[
\begin{align*}
&\text{N} \\
&\text{N} \\
&\text{F} \\
&\text{N} \\
&\text{N} \\
&\text{H}_2 \\
&\text{N} \\
&\text{O} \\
&\text{C} \\
&\text{H}_3 \\
&\text{C} \\
&\text{H}_3
\end{align*}
\]

Physicochemical properties: Riociguat is a white to yellowish, crystalline, non-hygroscopic substance. In solid form it is stable to temperature, light, and humidity.

The solubility at 25°C in water: 4 mg/L, in ethanol: 800 mg/L, in 0.1 M HCl (pH 1): 250 mg/L and in buffer (phosphate) pH 7: 3 mg/L. In the pH range of 2 to 4 the solubility showed strong pH-dependency. Solubility increases at lower pH values.

CLINICAL TRIALS

The ADEMPAS Phase III program included the CHEST-1 study in CTEPH patients, and the PATENT-1 study in patients with PAH.

CHEST-1 Study in patients with chronic thromboembolic pulmonary hypertension (CTEPH)

Study Design and Demographics

This randomized, double-blind, multi-national, multi-centre, placebo controlled Phase III study was conducted in patients with inoperable, or persistent or recurrent CTEPH after surgical...
treatment. Patients were included who were inoperable (assessed by an independent adjudication committee or an experienced surgeon), or who had recurrent or persistent CTEPH after undergoing pulmonary endarterectomy (PEA).

The patient population included male and female patients between the ages of 19 and 80 (mean age: 59.3 years). 72% of patients had inoperable CTEPH, 28% had recurrent or persistent CTEPH following PEA.

The majority of patients were classified as World Health Organization (WHO) Functional Class II (31%) or III (64%) at baseline. The mean baseline 6MWD was 347 m. All patients were treatment naïve (PAH-specific medication was excluded).

CHEST-1 included 261 patients treated and valid for safety randomized to one of two treatment groups: riociguat individual dose titration (IDT) up to 2.5 mg tid (n=173, referred to as the riociguat group), or placebo (n=88). During an 8-week titration phase, the dose of riociguat was titrated every 2-weeks based on the patient’s systolic blood pressure and signs or symptoms of hypotension. An individualized dose was reached at the end of the titration.

At the end of the 16-week treatment phase, 77% of patients in the riociguat group were on the highest dose of 2.5 mg, 13% were on 2.0 mg and the remainder on lower doses. Eligible patients had the option to enter an open-label extension trial (CHEST-2), where all patients received an individualized optimal dose of riociguat.

Study Results

Improvements in the primary efficacy variable, the six minute walk distance (6MWD), were apparent from week 2 onward, and at week 16 the increase in 6MWD within the riociguat group was 46 m (least-squares mean) (95% Confidence Interval (CI): 25 m to 67 m; p<0.0001) compared to placebo (ITT analysis, see Figure 1). Improvements of riociguat over placebo were observed in all sub-groups evaluated. Inoperable patients (n=189) demonstrated an increase in 6MWD of 54 m (29 m to 79 m), and patients with recurrent or persistent CTEPH following PEA (n=72) demonstrated an increase in 6MWD of 27 m (-10 m to 63 m). In patients with a WHO Functional Class of III/IV at baseline, riociguat led to a 53 m (27 m to 79 m) improvement in the 6MWD from baseline to week 16; in patients with a WHO Functional Class of I/II at baseline, the treatment effect was 26 m (-9 m to 59 m).

A larger proportion of patients in the riociguat group than in the placebo group had an improvement in 6MWD of at least 30 m by week 16: (63% vs. 30%) (see Figure 1).
Figure 1: Mean (± standard error) changes from baseline in the distance walked in 6 minutes (modified intention-to-treat population without imputation of missing values) during the 16 week of CHEST-1 study

Treatment with riociguat resulted in improvements across the secondary efficacy variables. There were significant reductions in PVR and NT-proBNP, and a significant improvement in WHO Functional Class of at least one Functional Class in the riociguat group at week 16 [last visit] of 33% vs. 15% in the placebo group, while a decline of at least one Functional Class was observed in 5% of patients in riociguat group vs. 7% in placebo group (p=0.0026) (see Table 7). There were also favorable effects in the riociguat group on time to clinical worsening, Borg CR 10 Scale, EQ-5D questionnaire, and LPH questionnaire (see Table 8).

Table 7: Effects of Riociguat on the Change in WHO Functional Class in CHEST-1 from Baseline to Week 16

<table>
<thead>
<tr>
<th>Change in WHO Functional Class</th>
<th>Riociguat (n=173)</th>
<th>Placebo (n=87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>57 (33%)</td>
<td>13 (15%)</td>
</tr>
<tr>
<td>Stable</td>
<td>107 (62%)</td>
<td>68 (78%)</td>
</tr>
<tr>
<td>Deteriorated</td>
<td>9 (5%)</td>
<td>6 (7%)</td>
</tr>
</tbody>
</table>

p-value=0.0026
Table 8: Summary of Efficacy Results for Pre-defined Variables in the Hierarchical Testing Order - CHEST-1, ITT Analysis Set

<table>
<thead>
<tr>
<th>Variable</th>
<th>LS mean (treatment difference of riociguat IDT to placebo)</th>
<th>95% CI</th>
<th>Stratified Wilcoxon test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6MWD (m) (primary)</td>
<td>46</td>
<td>25 to 67</td>
<td><0.0001*</td>
</tr>
<tr>
<td>PVR (dyns cm^{-5})</td>
<td>-246</td>
<td>-303 to -190</td>
<td><0.0001*</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td>-444</td>
<td>-843 to -45</td>
<td><0.0001*</td>
</tr>
<tr>
<td>WHO Functional Class</td>
<td>32.9%a riociguat 14.9%a placebo</td>
<td>N/A</td>
<td>0.0026*</td>
</tr>
<tr>
<td>Time to clinical worseningb</td>
<td>2.3%e riociguat 5.7%e placebo</td>
<td>N/A</td>
<td>0.1724d</td>
</tr>
<tr>
<td>Borg CR 10 score</td>
<td>-0.8f riociguat 0.2f placebo</td>
<td>N/A</td>
<td>0.0035f</td>
</tr>
<tr>
<td>EQ-5D score</td>
<td>0.13</td>
<td>0.06 to 0.21</td>
<td><0.0001</td>
</tr>
<tr>
<td>LPH score</td>
<td>-5.76</td>
<td>-10.45 to -1.06</td>
<td>0.1220</td>
</tr>
</tbody>
</table>

Abbreviations: LS = least square; CI = confidence interval; IDT = individual dose titration (riociguat 1.0 to 2.5 mg); 6MWD = 6 minute walking distance; PVR = pulmonary vascular resistance; NT-proBNP = N-terminal prohormone brain natriuretic peptide; EQ-5D = European quality of life 5-dimensions instrument; LPH = Living with Pulmonary Hypertension

* Statistically significant
a Improvement by at least 1 WHO Functional Class in the respective treatment group
b Time to clinical worsening is defined as the number of days from start of study drug to the event of clinical worsening
c Percentage of subjects with one or more clinical worsening event in the respective treatment group
d Stratified log-rank test p-value for time to clinical worsening
e Change from baseline to last visit in the respective treatment group
f Due to the hierarchical testing strategy, formal statistical testing stopped at this point.

Invasive hemodynamic parameters were assessed in CHEST-1. Right heart catheterization was performed at the beginning and the end of the study period in 233 patients. A statistically significant reduction of PVR (-246 dyn*s*cm^{-5}, p<0.0001), mean pulmonary artery pressure (PAP_{mean}) (-5.0 mmHg, p<0.0001) and an increase in cardiac index (0.47 L/min/m^2; p<0.0001) was shown in the riociguat group compared to placebo (see Table 9).
Table 9: CHEST 1, Change in Hemodynamic Parameters from Baseline to Last Visit

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Mean change</th>
<th>LS mean difference</th>
<th>95% CI</th>
<th>Stratified Wilcoxon test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCWP (mmHg)</td>
<td>0.59</td>
<td>0.58</td>
<td>-0.36 to 1.53</td>
<td>0.2285</td>
</tr>
<tr>
<td>RAP (mmHg)</td>
<td>-1.04</td>
<td>-0.55</td>
<td>-1.72 to 0.62</td>
<td>0.3593</td>
</tr>
<tr>
<td>PAPsyst (mmHg)</td>
<td>-6.84</td>
<td>-7.52</td>
<td>-10.88 to -4.16</td>
<td><0.0001</td>
</tr>
<tr>
<td>PAPdiast (mmHg)</td>
<td>-3.05</td>
<td>-3.62</td>
<td>-5.30 to -1.95</td>
<td>0.0002</td>
</tr>
<tr>
<td>PAPmean (mmHg)</td>
<td>-4.31</td>
<td>-4.96</td>
<td>-6.75 to -3.16</td>
<td><0.0001</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>-9.27</td>
<td>-9.15</td>
<td>-11.83 to -6.46</td>
<td><0.0001</td>
</tr>
<tr>
<td>SvO2 (%)</td>
<td>2.95</td>
<td>3.85</td>
<td>1.46 to 6.25</td>
<td>0.0010</td>
</tr>
<tr>
<td>CO (L/min)</td>
<td>2.81</td>
<td>0.86</td>
<td>0.59 to 1.12</td>
<td><0.0001</td>
</tr>
<tr>
<td>CI (L/min/m²)</td>
<td>0.45</td>
<td>0.47</td>
<td>0.33 to 0.62</td>
<td><0.0001</td>
</tr>
<tr>
<td>PVR* (dynscm⁻²)</td>
<td>-226</td>
<td>-246.43</td>
<td>-303.33 to -189.53</td>
<td><0.0001</td>
</tr>
<tr>
<td>PVRI (dynscm⁻²*m⁻²)</td>
<td>-397</td>
<td>-448.95</td>
<td>-553.62 to -344.27</td>
<td><0.0001</td>
</tr>
<tr>
<td>SVR (dynscm⁻²)</td>
<td>-445</td>
<td>-478.24</td>
<td>-602.30 to -354.19</td>
<td><0.0001</td>
</tr>
<tr>
<td>SVRI (dynscm⁻²*m⁻²)</td>
<td>-799</td>
<td>-914.16</td>
<td>-1140.97 to -687.35</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Abbreviations: CI = Cardiac Index; CO = Cardiac Output; MAP = Mean Arterial Pressure; PAPdiast = Diastolic Pulmonary Arterial Pressure; PAPmean = Mean Pulmonary Arterial Pressure; PAPsyst = Systolic Pulmonary Arterial Pressure; PBO = Placebo; PCWP = Pulmonary Capillary Wedge Pressure; PVR = Pulmonary Vascular Resistance; PVRI = Pulmonary Vascular Resistance Index; RAP = Right Atrial Pressure; RIO = Riociguat 1.0 mg; SvO2 = Venous Oxygen Saturation Rate; SVR = Systolic Vascular Resistance; SVRI = Systolic Vascular Resistance Index

* PVR was a secondary endpoint in the study

NT-proBNP levels were significantly reduced: placebo-corrected mean change from baseline was -444 pg/mL, CI -843 to -45, p<0.0001 (see Table 8).

A greater improvement in WHO Functional Class was observed in the riociguat IDT group than in the placebo group (see Table 8). A higher proportion of patients in the riociguat IDT group than in the placebo group had an improvement of at least one Functional Class (32.9% vs. 14.9%).

Time to clinical worsening (TTCW) was not statistically significantly different compared to placebo, but there was a trend in favour of the riociguat-treated patients (see Table 8). The secondary efficacy variable of TTCW was a combined endpoint of death (all-cause mortality), and events reflective of residual clinical worsening. Benefit was observed in both inoperable and operable CTEPH patients.

Patients previously randomized to either riociguat or placebo in CHEST-1 received individualized dose-titrated riociguat (capped at 2.5 mg tid) in an open-label extension study of CHEST-1. The open label extension study (CHEST-2) included 237 patients who had completed CHEST-1. At the cut-off date in the CHEST-2 study, the mean treatment duration total population was 1077 days (± 433). The probabilities of survival at 1, 2, and 3 years were 97%, 93%, and 89%, respectively. Without a control group, these data must be interpreted cautiously and cannot be used to determine the long-term effect of riociguat on mortality.

Patients on riociguat in CHEST-1 (n=129) ended the study with a 51.2 ± 61.8 m (mean±SD) improvement in 6MWD compared to baseline; in CHEST-2 improvement in 6MWD in the riociguat group was 57.4 ± 69.0 m (n=155), 55.8 ± 62.5 m (n=138), and 51.0 ± 65.5m (n=128).
at 12 weeks, 12 months and 24 months. Patients on placebo in CHEST-1 ended the study with a 4.1 ± 66.2 m (n=65) improvement in 6MWD compared to baseline; in CHEST-2 improvement in 6MWD in this former placebo group was 43.0 ± 72.3 m (n=82), 45.3±70.8 m (n=71), 41.3±77.8 m (n=65) 12 weeks, 12 months and 24 months. Improvements in 6MWD persisted at 2 years in CHEST-2. Mean change from baseline for the overall population (N=237) was 56.5 m at 6 months (n=218), 50.9 m at 9 months (n=219), 52.2 m at 12 months (n=209) and 47.8m at 24 months (n=193).

Of the patients on riociguat in CHEST-1, 34.9% completed that study with a ≥ 1 class improvement in WHO Functional Class, and 3.9% with a 1 class deterioration compared to baseline in CHEST-1: 34.9/3.9% (n=129). At 12 weeks and 24 months into CHEST-2, these improvement/deterioration fractions in the riociguat group were 40.7/3.2% (n=68) and 41.8%/2.2% (n=59), respectively. Of the patients on placebo in CHEST-1, 13.8% ended that study with a ≥ 1 class improvement in WHO Functional Class, and 3.1% with a 1 class deterioration compared to baseline in CHEST-1: 13.8%/3.1% (n=65). At 12 weeks and 24 months into CHEST-2 these improvement/deterioration fractions in the former placebo group were 39.5%/2.5% (n=34) and 34.3%/2.9% (n=26), respectively.

PATENT-1 Study in patients with pulmonary arterial hypertension (PAH)

Study Design and Demographics

This randomized, double-blind, multi-national, multi-centre, placebo controlled, phase III study (PATENT-1) was conducted in patients with PAH who were either treatment-naïve or pre-treated with an endothelin receptor antagonist (ERA) or a prostacyclin analogue (PCA) (inhaled, oral or subcutaneous).

In PATENT-1, 443 patients with baseline 6MWD of 150 to 450 m, a PVR > 300 dyn*s*cm⁻⁵, mean PAP >25 mmHg and systemic systolic pressure >95 and <180 mmHg were randomized to three groups in a 4 to 2 to 1 ratio to either: (1) Individual Dose Titration (IDT) group on riociguat 1.0 to 2.5 mg tid (254 patients titrated by steps of 0.5 mg tid every two weeks), (2) placebo (126 patients), or (3) to a riociguat 1.0 to 1.5 mg tid dose group with dose capped at 1.5 mg tid (63 patients - exploratory arm, no statistical testing performed). Demographics and baseline characteristics were similar between treatment groups.

The overall patient population included male and female (79%) patients who were between the ages of 18 and 80 years (mean age: 51 years and approximately 25% ≥65 years) and had been diagnosed with either idiopathic PAH (61%), familial PAH (2%), PAH associated with connective tissue disease (25%), operated congenital heart disease (8%), portal hypertension (3%), or associated PAH due to anorexigen or amphetamine use (1%).

The majority of patients were classified as WHO Functional Class II (42%) or III (54%) at baseline. The overall mean baseline 6MWD was 363 m. 50% of patients were treatment naïve, 44% were pretreated with ERAs and 6% were pretreated with prostacyclin analogues alone.

The 12-weeks treatment period included an 8-week titration phase, during which the dose of riociguat was titrated every 2 weeks based on the patient’s systolic blood pressure and signs or symptoms of hypotension, was followed by a 4-week treatment at the ‘optimal’ dose reached during the titration phase. At the end of the 12-week treatment phase, 75% of patients in the riociguat IDT group were on the highest dose of 2.5 mg, 15% were on 2.0 mg and the remainder
on lower doses. Eligible patients of the three groups had the option to enter an open-label extension trial (PATENT-2), where all patients received individual optimal doses of riociguat.

Study Results

Treatment with riociguat IDT resulted in a statistically significant (p=<0.0001) improvement in 6MWD compared to placebo by a mean increase at 12 week of 36 m (95% CI 20, 52).

The pre-specified primary endpoint of the study was the change in 6MWD from baseline to week 12 and was based on imputed values. The imputation for missing values included last observed value, not including follow-up for patients who completed the study or withdrew. In case of death or clinical worsening without a termination visit or a measurement at that termination visit, the imputed worst value (zero) was used.

Results of the 6MWD over 12 weeks for the PATENT-1 study are shown in Figure 2.

Figure 2: PATENT-1 Mean Change from Baseline in the 6-Minute Walk Distance

![Figure 2: PATENT-1 Mean Change from Baseline in the 6-Minute Walk Distance](image)

Figure 3 illustrates the results of the ADEMPAS and placebo treatment groups displayed as a histogram summarizing the treatment effect on the 6MWD. The patients are grouped by change in 20 meters from baseline. Overall this figure shows that patients treated with ADEMPAS benefit compared to those treated with placebo. As demonstrated in **Figure 3**, 193 patients receiving ADEMPAS (76%) experienced an improvement in 6MWD compared to 74 patients (59%) on placebo.
Improvements 6MWD were apparent from Week 2 onward. At Week 12, the placebo-adjusted mean increase in 6MWD within the ADEMPAS group was 36 m (95% CI: 20 m to 52 m; p<0.0001). For PATENT-1, the median difference (Hodges-Lehmann non-parametric estimate) in 6MWD was 29 m (95% CI, 17 m to 40 m). There was an exploratory 1.5 mg capped titration arm (n = 63). The data did not suggest incremental benefit from escalating dose from 1.5 mg three times a day to 2.5 mg three times a day.

Placebo-adjusted changes in 6MWD at 12 weeks were evaluated in subgroups (see Figure 4).
WHO Functional Class improvements in the IDT (individual dose titration) arm of the PATENT-1 trial are shown in Table 10.

Table 10: Effects of ADEMPAS on the Change in WHO Functional Class in PATENT-1 from Baseline to Week 12

<table>
<thead>
<tr>
<th>Change in WHO Functional Class</th>
<th>ADEMPAS (IDT) (n=254)</th>
<th>Placebo (n=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>53 (21%)</td>
<td>18 (14%)</td>
</tr>
<tr>
<td>Stable</td>
<td>192 (76%)</td>
<td>89 (71%)</td>
</tr>
<tr>
<td>Deteriorated</td>
<td>9 (4%)</td>
<td>18 (14%)</td>
</tr>
</tbody>
</table>

p-value = 0.0033

Time to clinical worsening was a combined endpoint defined as death (all-cause mortality), heart/lung transplantation, atrial septostomy, hospitalization due to persistent worsening of pulmonary hypertension, start of new PAH-specific treatment, persistent decrease in 6MWD and persistent worsening of WHO Functional Class.

Effects of ADEMPAS in PATENT-1 on events of clinical worsening are shown in Table 11.
Table 11: Effects of ADEMPAS in PATENT-1 on Events of Clinical Worsening (ITT analysis set)

<table>
<thead>
<tr>
<th>Clinical Worsening Events</th>
<th>ADEMPAS (IDT) (n=254)</th>
<th>Placebo (n=126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with any clinical worsening*</td>
<td>3 (1.2%)</td>
<td>8 (6.3%)</td>
</tr>
<tr>
<td>Death</td>
<td>2 (0.8%)</td>
<td>3 (2.4%)</td>
</tr>
<tr>
<td>Hospitalizations due to PH</td>
<td>1 (0.4%)</td>
<td>4 (3.2%)</td>
</tr>
<tr>
<td>Decrease in 6MWD due to PH</td>
<td>1 (0.4%)</td>
<td>2 (1.6%)</td>
</tr>
<tr>
<td>Persistent worsening of FC due to PAH</td>
<td>0</td>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>Start of new PAH treatment</td>
<td>1 (0.4%)</td>
<td>5 (4.0%)</td>
</tr>
</tbody>
</table>

* p-value=0.0285 (Mantel-Haenszel estimate)

Note: Patients may have had more than one event of clinical worsening

ADEMPAS-treated patients experienced a significant delay in time to clinical worsening versus placebo-treated patients (p=0.0046; Stratified log-rank test). Significantly fewer events of clinical worsening up to week 12 (last visit) were observed in patients treated with ADEMPAS (1.2%) compared to placebo (6.3%) (p=0.0285, Mantel-Haenszel estimate). The Kaplan-Meier plot of time to clinical worsening is presented in Figure 5.

Figure 5: PATENT-1 Time (in Days) to Clinical Worsening (ITT analysis set)

In the PATENT-1 study riociguat demonstrated a statistically significant reduction of NT-proBNP, placebo-corrected mean change from baseline: -432 ng/L, 95% CI -782 to -82 and Borg CR 10 scale, change from baseline to last visit in the respective treatment group: -0.4 riociguat vs 0.1 placebo.

Invasive hemodynamic parameters were assessed in PATENT-1 and are shown in Table 12. Right heart catheterization was performed at the beginning and the end of the study period in 339 patients.
Table 12: PATENT-1 Change in Hemodynamic Parameters from Baseline to Last Visit: Comparison of Riociguat IDT and Placebo

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Mean change</th>
<th>LS mean* difference</th>
<th>95% CI</th>
<th>Stratifiedb Wilcoxon test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCWP (mmHg)</td>
<td>1.08</td>
<td>0.46</td>
<td>-0.36 to 1.18</td>
<td>0.0830</td>
</tr>
<tr>
<td>RAP (mmHg)</td>
<td>-0.20</td>
<td>0.97</td>
<td>-2.15 to 0.13</td>
<td>0.0734</td>
</tr>
<tr>
<td>PAPsyst (mmHg)</td>
<td>-5.39</td>
<td>0.78</td>
<td>-9.43 to -4.04</td>
<td><0.0001</td>
</tr>
<tr>
<td>PAPdiast (mmHg)</td>
<td>-3.19</td>
<td>-1.12</td>
<td>-4.15 to -0.68</td>
<td>0.0110</td>
</tr>
<tr>
<td>PAPmean (mmHg)</td>
<td>-3.93</td>
<td>-0.50</td>
<td>-5.61 to -2.06</td>
<td>0.0002</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>-8.54</td>
<td>-1.40</td>
<td>-9.60 to -4.90</td>
<td><0.0001</td>
</tr>
<tr>
<td>SvO₂ (%)</td>
<td>3.15</td>
<td>-2.33</td>
<td>3.20 to 6.84</td>
<td><0.0001</td>
</tr>
<tr>
<td>CO (L/min)</td>
<td>0.93</td>
<td>-0.01</td>
<td>0.70 to 1.15</td>
<td><0.0001</td>
</tr>
<tr>
<td>CI (L/min/m²)</td>
<td>0.54</td>
<td>-0.02</td>
<td>0.44 to 0.69</td>
<td><0.0001</td>
</tr>
<tr>
<td>PVR (dynscm⁻²)</td>
<td>-223</td>
<td>-8.9</td>
<td>-225.72 to -170.08</td>
<td><0.0001</td>
</tr>
<tr>
<td>PVRI (dynscm⁻²*m²)</td>
<td>-374</td>
<td>-22.4</td>
<td>-468.90 to -284.72</td>
<td><0.0001</td>
</tr>
<tr>
<td>SVR (dynscm⁻²)</td>
<td>-448</td>
<td>-67.5</td>
<td>-472.95 to -316.19</td>
<td><0.0001</td>
</tr>
<tr>
<td>SVRI (dynscm⁻²*m²)</td>
<td>-753</td>
<td>-130</td>
<td>-800.84 to -549.79</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Abbreviations: CI = Cardiac Index; CO = Cardiac Output; MAP = Mean Arterial Pressure; PAPdiast = Diastolic Pulmonary Arterial Pressure; PAPmean = Mean Pulmonary Arterial Pressure; PAPsyst = Systolic Pulmonary Arterial Pressure; PBO = Placebo; PCWP = Pulmonary Capillary Wedge Pressure; PVR = Pulmonary Vascular Resistance; PVRI = Pulmonary Vascular Resistance Index; RAP = Right Atrial Pressure; RIO = Riociguat 1.0-2.5 mg; SvO₂ = Venous Oxygen Saturation Rate; SVR = Systolic Vascular Resistance; SVRI = Systolic Vascular Resistance Index

a Last visit = Last observed value post-baseline (not including follow-up)
b Stratified Wilcoxon test by region and stratification group

Long Term Treatment of PAH

An open label extension study (PATENT-2) included 396 patients who had completed PATENT-1. At the cut-off date in the PATENT-2 study, the mean treatment duration total population was 1146 days (± 479). The probabilities of survival at 1, 2, and 3 years were 97%, 93%, and 88%, respectively. Without a control group, these data must be interpreted cautiously and cannot be used to determine the long-term effect of riociguat on mortality.

The long-term 6MWD data indicate maintenance of the riociguat treatment effect, with improvement in 6MWD observed for at least 18 months. Mean change from baseline in PATENT-2 for the total group (N=396) was 50.2 ± 65.5 m at 12 weeks (n=396), 50.2 ± 72.6 m at 12 months (n=351) and 46.1 ± 83.0 m at 24 months (n=316).

The findings for 6MWD, NT-proBNP, WHO Functional Class and Borg CR 10 Scale in study PATENT-2 were maintained and consistent with the key findings seen in study PATENT-1.

DETAILED PHARMACOLOGY

Animal Pharmacology

In all species tested, the toxicological profile of ADEMPAS was characterized by effects secondary to the pharmacological mode of action – stimulation of the soluble guanylate cyclase...
and subsequent increase of intracellular cGMP levels. The cardiovascular, the gastrointestinal and the skeletal system were shown to be most sensitive to these effects.

Nonclinical safety testing of ADEMPAS revealed no toxicity of specific concern like hepatotoxicity and renal toxicity. Studies addressing the risk for QT-prolongation in vitro showed no relevant intrinsic effect of ADEMPAS on cardiac repolarization. The QT interval was not considered as affected when corrected for heart rate in conscious or anesthetized dogs after single oral administration of ADEMPAS or its main metabolite M1.

Human Pharmacology

ADEMPAS is a stimulator of soluble guanylate cyclase (sGC), an enzyme found in most mammalian cells including those of the cardiopulmonary system. sGC is also the receptor for nitric oxide (NO).

Pharmacodynamics

When NO binds to sGC, the enzyme catalyzes the synthesis of the signaling molecule cyclic guanosine monophosphate (cGMP). Intracellular cGMP plays an important role in regulating processes that influence vascular tone, proliferation, fibrosis, and inflammation.

Pulmonary hypertension is associated with endothelial dysfunction, impaired synthesis of nitric oxide, and insufficient stimulation of the NO-sGC-cGMP pathway.

Riociguat has a dual mode of action. It sensitizes sGC to endogenous NO by stabilizing the NO-sGC binding. Riociguat also directly stimulates sGC via a different binding site, independently of NO.

Riociguat restores the NO-sGC-cGMP pathway and leads to increased generation of cGMP. There is a direct relationship between riociguat plasma concentration and hemodynamic parameters such as systemic and pulmonary vascular resistance, systolic blood pressure, and cardiac output.

Pharmacokinetics

Absorption and Bioavailability

The absolute bioavailability of riociguat is high (94%). Riociguat is rapidly absorbed with maximum concentrations (C_{max}) appearing 1 to 1.5 hours after tablet intake.

Intake with food does not affect riociguat AUC. C_{max} was reduced to a minor extent (35% lowering). Therefore, riociguat can be taken with or without food.

Distribution

Plasma protein binding in humans is high at approximately 95%, with serum albumin and α1-acidic glycoprotein being the main binding components.

The volume of distribution is moderate with volume of distribution at steady state being approximately 30 L.
Metabolism

N-demethylation, catalyzed by CYP1A1, CYP3A4, CYP3A5, and CYP2J2, is the major biotransformation pathway of riociguat leading to its major circulating active metabolite M1 (pharmacological activity: 1/10th to 1/3rd of riociguat) which is further metabolized to the pharmacologically inactive N-glucuronide.

In vitro, ketoconazole, classified as a strong CYP3A4 and P-glycoprotein (P-gp) inhibitor, has been shown to be a ‘multipathway CYP and P-gp/breast cancer resistance protein (BCRP) inhibitor’ for riociguat metabolism and excretion.

From the recombinant CYP isoforms investigated *in vitro* CYP1A1 most effectively catalyzed formation of riociguat main metabolite. The class of tyrosine kinase inhibitors was identified as potent inhibitors of CYP1A1, with erlotinib and gefitinib exhibiting the highest inhibitory potency *in vitro*. Therefore, drug-drug interactions by inhibition of CYP1A1 could result in increased riociguat exposure, especially in smokers. Therefore, strong CYP1A1 inhibitors should be used with caution.

Excretion

Total riociguat (parent compound and metabolites) is excreted via both renal (33 to 45%) and biliary/fecal routes (48 to 59%). Four to 19% of the administered dose is excreted as unchanged riociguat via the kidneys, and 9 to 44% of the administered dose is found as unchanged riociguat in feces.

Based on *in vitro* data riociguat and its main metabolite are substrates of the transporter proteins P-gp (P-glycoprotein) and BCRP (breast cancer resistance protein).

With a systemic clearance of about 3 to 6 L/h, riociguat can be classified as a low-clearance drug. Elimination half-life is about 7 hours in healthy subjects and about 13 hours in patients.

Linearity / Non-linearity

Riociguat pharmacokinetics is linear from 0.5 to 2.5 mg.

Inter-individual variability (CV%) of riociguat exposure (AUC) across all doses is approximately 60%. The intra-individual variability is considerably lower with 35% for riociguat trough plasma concentration (C_{trough}).

Special Populations

Geriatrics

Elderly patients (≥65 years) exhibited higher plasma concentrations than younger patients, with mean AUC values being approximately 40% higher in elderly, mainly due to reduced (apparent) total and renal clearance (see DOSAGE AND ADMINISTRATION, Geriatrics (≥65 years of age)).

Hepatic Insufficiency

There was no clinically relevant change in exposure in cirrhotic subjects with mild-hepatic impairment (classified as Child Pugh A).
In cirrhotic subjects with moderate hepatic impairment (classified as Child Pugh B), riociguat mean AUC was increased by 50 to 70% compared to healthy controls (see DOSAGE AND ADMINISTRATION, Hepatic Impairment).

There are no data in patients with severe hepatic impairment (classified as Child Pugh C), and, therefore, the use of ADEMPAS is not recommended in these patients (see WARNINGS AND PRECAUTIONS, Special Populations and DOSAGE AND ADMINISTRATION, Hepatic Impairment).

Renal Insufficiency

Overall, mean dose- and weight- normalized exposure values for riociguat were higher in subjects with renal impairment compared to subjects with normal renal function. Corresponding values for the main metabolite were higher in subjects with renal impairment compared to healthy subjects. In individuals with mild (creatinine clearance 50 to 80 mL/min), moderate (creatinine clearance 30 to <50 mL/min) or severe (creatinine clearance <30 mL/min) renal impairment, riociguat plasma concentrations (AUC) were increased by 43%, 104%, or 44%, respectively (see DOSAGE AND ADMINISTRATION, Renal Impairment).

There are no data in patients with creatinine clearance <15 mL/min or on dialysis. Therefore, use is not recommended in patients with creatinine clearance <15 mL/min or on dialysis (see WARNINGS AND PRECAUTIONS, Special Populations and DOSAGE AND ADMINISTRATION, Hepatic Impairment).

Due to the high plasma protein binding riociguat is not expected to be dialyzable.

Gender, Ethnicity, Weight Categories

Pharmacokinetic studies revealed no relevant differences due to gender, ethnicity or weight in the exposure to riociguat.

TOXICOLOGY

Non-clinical data revealed no unusual hazard for humans based on conventional studies of safety pharmacology, single dose toxicity, phototoxicity, genotoxicity, and carcinogenicity. Embryo-fetal toxicity, including malformations, was seen in developmental/reproductive studies.

Repeated Dose Toxicity

Effects observed in repeat-dose toxicity studies were mainly due to the pharmacodynamic activity of riociguat (hemodynamic and smooth muscle relaxing effects), and occurred at systemic exposures comparable to or less than that at the maximum human recommended dose (MRHD).

In rats, these included: clinical signs such as penile erection likely due to vasodilation; increased water consumption and urine volume and consequently decreased urine density and concentrations of constituents, increased adrenal gland weight and width of the zona glomerulosa; prominent/dilated vascular spaces in wall of mesenteric veins; increased red blood cell parameters and reticulocyte counts; and intestinal effects (distended abdomen, increased girth, elongated intestines, dilated cecum) presumed due to reduced gastrointestinal motility.
Bile duct activation and/or hyperplasia and increased periportal inflammatory infiltration was seen in rats given 100 g/kg/day in a 13-week study resulting exposures about 7 times that at the MRHD, although the incidence of biliary cysts was increased in high dose males rats in the carcinogenicity study at exposures only slightly above that at the MRHD. Similar findings were not seen in mice or dogs.

Increased heart weight at therapeutic exposures was without microscopic correlate in subchronic and chronic rat studies. However, cardiac enlargement and increased incidences of atrial thrombus, dilation, cardiomyopathy, and vasculopathy in high dose males in the rat carcino genicity study occurred at exposures more than twice that at the MRHD, although exposure was less than that at the MRHD at the no-effect dose.

Clinical effects in dogs were mainly referable to the gastrointestinal system, and included vomiting, diarrhea, decreased food consumption, and weight loss.

In dogs, marked decreases in systolic and diastolic blood pressure and compensatory increases in heart rate that occurred at ≥ 0.3 mg/kg/day were without a no effect dose level. Pathologic lesions in heart (myocardial degeneration, myocardial fibrosis of papillary muscle, endocarditis) and in coronary vessels (vascular/perivascular edema, vascular hypertrophy) also occurred at ≥ 0.3 mg/kg/day. Hemodynamic and cardiovascular hemodynamic changes occurred in dogs at systemic exposures comparable to or less than exposure at the MRHD.

Genotoxicity

Neither riociguat nor its major circulating active metabolite was genotoxic, both being negative in bacterial mutation (Ames) assays, in vitro chromosome aberration assays in Chinese Hamster V79 cells, and in vivo bone marrow micronucleus studies in male mice. Riociguat was also negative in an in vivo bone marrow cytogenetic study conducted in male mice.

Carcinogenicity

In rats, at systemic exposure corresponding up to 7-fold of the human exposure, riociguat was non-carcinogenic.

In the carcinogenicity study in mice, statistically non-significant increases in intestinal tumors were seen at exposure levels slightly less and more than the human therapeutic exposure were considered to be a consequence of chronic nonneoplastic large intestinal lesions including inflammation, mucosal degeneration, and reactive hyperplasia.

Reproductive Toxicology

Studies in rats and rabbits have shown marked reproductive toxicity of riociguat and its main metabolite.

Administration of riociguat to rats in the pre- and postnatal period resulted in a decreased live birth index and decreased survival up to day 4 post-partum. At the no-observed-adverse-effect level (NOAEL) for the effects, the rat systemic exposure to riociguat was lower than the maximum human exposure. Administration of riociguat to rats during the gestation period resulted in an increased rate of cardiac malformations and an increase in post-implantation loss, including early resorption. At the NOAEL for these effects, the rat systemic exposure to riociguat was in the range of the maximum human exposure. The major fetal effects of the main
metabolite (M1) of riociguat, administered to rats during the gestation period included: a decrease in fetal weight, an increased incidence of underdeveloped or missing thyroid glands, and retarded ossification. At the NOAEL for these effects, the rat systemic exposure to M1 was comparable to the maximum human exposure.

In rabbits, abortion and fetal toxicity were seen with riociguat administered during the gestation period starting at systemic exposure lower than the maximum human exposure. Also in rabbits, abortion and total resorption were seen with M1 administered during the gestation period. At the NOAEL for these effects, the rabbit systemic exposure to M1 was lower than the maximum human exposure.

In rats, no effects on male and female fertility were seen with riociguat, but its main metabolite (M1) produced a slight decrease in implantation rate at systemic exposure comparable to maximum human exposure.

Bone Toxicity

In fast growing, adolescent rats, effects on bone formation (i.e., an increase in overall bone mass) were seen. In adult rats, when treatment was initiated during adolescence, increased bone remodeling/hyperostosis in the femur was observed in the 26-week chronic toxicity study at steady state systemic exposures in the range of human therapeutic levels. No bone effects were seen when treatment was initiated in adult, full grown rats.
REFERENCES

PART III: CONSUMER INFORMATION

PrADEMPAS®
Riociguat Tablets

This leaflet is Part 3 of a three-part "Product Monograph" published when ADEMPAS was approved for sale in Canada and is designed specifically for Consumers. This leaflet is a summary and will not tell you everything about ADEMPAS. Contact your doctor or pharmacist if you have any questions about the drug.

ABOUT THIS MEDICATION

What the medication is used for:
ADEMPAS is indicated to treat adult patients with:

- **CTEPH (Chronic Thromboembolic Pulmonary Hypertension) (WHO Group 4).**

 CTEPH is a disease where high blood pressure occurs in lung vessels (pulmonary arteries) which is caused by fixed blood clots hindering the blood flow. High pulmonary blood pressure in the lung vessels means that the heart needs to work harder to pump blood through the lungs. This causes people to feel tired, dizzy and short of breath.

 ADEMPAS is intended for use in patients with CTEPH who cannot be operated (inoperable CTEPH) or in patients with persistent or recurrent high pulmonary blood pressure after surgical treatment.

- **PAH (Pulmonary Arterial Hypertension) (WHO Group 1).**

 PAH is a disease where high blood pressure occurs in lung vessels (pulmonary arteries). In patients with PAH, these arteries get narrower, so the heart has to work harder to pump blood through them. This causes people to feel tired, dizzy and short of breath.

What it does:

- **CTEPH (WHO Group 4):**

 ADEMPAS contains riociguat, which is a soluble guanylate cyclase (sGC)-stimulator. It works by dilating the pulmonary arteries (the blood vessels that connect the heart to the lungs), lowering the high blood pressure and making it easier for the heart. This leads to an increase in exercise capacity (will increase a patient’s ability to walk further) and an improvement of Functional Class (a World Health Organization measure of symptom severity and impact on daily activities).

- **PAH (WHO Group 1):**

 ADEMPAS contains riociguat, which is a soluble guanylate cyclase (sGC)-stimulator. It works by dilating the pulmonary arteries (the blood vessels that connect the heart to the lungs), lowering the high blood pressure and making it easier for the heart. This leads to an increase in exercise capacity (will increase a patient’s ability to walk further), an improvement of Functional Class (a World Health Organization measure of symptom severity and impact on daily activities) and delayed clinical worsening in patients with PAH.

When it should not be used:

- if you are hypersensitive (allergic) to ADEMPAS or any other ingredients in the tablet.
- if you are pregnant or planning to become pregnant.
- If you are breast-feeding or plan to breast-feed.
- if you are taking sildenafil (VIAGRA, REVATIO), tadalafil (CIALIS, ADCIRCA), vardenafil (LEVITRA, STAXYN), nitrates (medicines used to treat high blood pressure or heart disease) or nitric oxide donors (such as amyl nitrite) in any form.
- if you have increased pressure in your pulmonary circulation associated with scarring of the lungs, of unknown cause (idiopathic pulmonary pneumonia).

What the medicinal ingredient is:

Riociguat.

What the nonmedicinal ingredients are:

Cellulose microcrystalline, crospovidone, hypromellose 5cP, lactose monohydrate, magnesium stearate, sodium laurilsulfate. The film-coating is composed of ferric oxide red, ferric oxide yellow, hydroxypropylcellulose, hypromellose 3cP, propylene glycol, titanium dioxide.

What dosage forms it comes in:

Film-coated tablets: 0.5 mg (white), 1 mg (pale yellow), 1.5 mg (yellow-orange), 2 mg (pale orange), 2.5 mg (red-orange).
WARNINGS AND PRECAUTIONS

BEFORE you use ADEMPAS talk to your doctor or pharmacist if you have or have had any of the following conditions:

- if you take PDE-5-inhibitors (such as sildenafil or tadalafil) used to treat high blood pressure in the pulmonary arteries (pulmonary arterial hypertension) or male erectile dysfunction (such as the above or vardenafil).

- if you feel short of breath during treatment with ADEMPAS, this can be caused by a build-up of fluid in the lungs (pulmonary veno-occlusive disease). Talk to your doctor.

- if you have recently experienced serious bleeding from the lung, or if you have undergone interventional treatment to stop coughing up blood (bronchial arterial embolization). In these cases the risk of bleeding from the lungs may increase further. Inform your doctor if you take medicines used to prevent blood clots (anticoagulants). You will be regularly monitored by your doctor.

- if you have problems with your heart, circulation or are on antihypertensive therapy.

- if you take medicines used to treat fungal infections (e.g. ketoconazole, itraconazole), or medicines for the treatment of HIV infection (e.g. abacavir, atazanavir, cobicistat, darunavir, dolutegravir, efavirenz, elvitegravir, emtricitabine, lamivudine, rilpivirine, ritonavir, and tenofovir). Taking ADEMPAS with either type of medicine may cause low blood pressure. Your doctor will monitor your health status and should consider a reduced starting dose for ADEMPAS.

- if you take medicines against cancer called tyrosine kinase inhibitors (e.g. erlotinib, gefitinib) or cyclosporine, a medicine used to prevent rejection of transplanted organs. In this case your doctor will have to check your blood pressure regularly.

ADEMPAS is not recommended for patients under 18 years of age, because there is no information on its use in children and adolescents.

Do not take ADEMPAS during pregnancy. If there is a chance you could become pregnant, use reliable forms of contraception while you are taking ADEMPAS. If you are pregnant, think you may be pregnant or are planning to have a baby, ask your doctor or pharmacist for advice before taking ADEMPAS.

If you are breast-feeding, ask your doctor or pharmacist for advice before taking ADEMPAS because it might harm your baby. A decision must be made whether to discontinue breast feeding or to stop therapy with ADEMPAS.

- If you are already taking ADEMPAS, starting medication to treat fungal (e.g. ketoconazole, itraconazole) or HIV infections (e.g. abacavir, atazanavir, cobicistat, darunavir, dolutegravir, efavirenz, elvitegravir, emtricitabine, lamivudine, rilpivirine, ritonavir, and tenofovir) is not recommended. Your doctor will recommend alternate treatment options for the treatment of fungal or HIV infections.

Tell your doctor that you have the following conditions:

- low blood pressure (<95 mm Hg) at the beginning of treatment
- severe liver problems (hepatic impairment, Child Pugh C)
- severe kidney problems (creatinine clearance <15 mL/min or if you are on dialysis)

since the use of ADEMPAS is not recommended, as there are no studies on the use of ADEMPAS in patients with these conditions.

INTERACTIONS WITH THIS MEDICATION

Drug-drug interaction:

Drugs that may interact with ADEMPAS include:

- nitric oxide donors (such as amyl nitrite)
- nitrates (medicines used to treat high blood pressure or heart disease)

- PDE-5-inhibitors, [such as sildenafil (VIAGRA, REVATIO) or tadalafil (CIALIS, ADCIRCA)] medicines used to treat high blood pressure in the pulmonary arteries (pulmonary arterial hypertension) or male erectile dysfunction [such as the above or vardenafil (LEVITRA, STAXYN)]

- medicines used to treat HIV (e.g. abacavir, atazanavir, cobicistat, darunavir, dolutegravir, efavirenz, elvitegravir, emtricitabine, lamivudine, rilpivirine, ritonavir, and tenofovir) or fungal infections (e.g. ketoconazole, itraconazole).

- cyclosporine (medicine used to prevent rejection of transplanted organs)

- erlotinib (TARCEVA) or gefitinib (IRESSA) (medicines against cancer)
• granisetron (medicine used to treat nausea and vomiting)
• phenytoin and carbamazepine (antiepileptic medicines), phenobarbitone (antiepileptic medicine, sedative)
• quinidine (antiarrhythmic, antimalarial agent)
• carvedilol (for the treatment of heart failure and hypertension)

Drug-herb interaction:
• St. John's Wort (herbal treatment for depression)

Drug-food interaction:
• ADEMPAS contains lactose. If you have been told by any doctor that you have an intolerance to some sugars, inform your doctor before taking this medicinal product.

Drug-lifestyle interaction:
• If you smoke, it is recommended that you stop, as smoking may reduce the efficacy of ADEMPAS. Contact your doctor if you stop or start smoking during treatment as a dose adjustment might be required.

See also ABOUT THIS MEDICATION: When it should not be used, and SIDE EFFECTS AND WHAT TO DO ABOUT THEM.

PROPER USE OF THIS MEDICATION

Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

Treatment should only be initiated and monitored by a doctor experienced in the treatment of CTEPH or PAH.

Usual adult dose:

During the first weeks of treatment your doctor will need to measure your blood pressure at least every two weeks. This is required to decide on the correct dose of your medication (ADEMPAS is available in different strengths (0.5 mg to 2.5 mg)).

Initial treatment dose:
• Starting at one 1 mg tablet, three times daily for 2 weeks. Your physician may have prescribed 0.5 mg 3 times daily for 2 weeks, depending on your health status.
• Tablets should be taken three times a day, approximately 6 to 8 hours apart, with or without food.
• Your doctor will increase the strength of your tablet every 2 weeks to a maximum of 2.5 mg three times a day (maximum daily dose of 7.5 mg) unless you experience any side effects or very low blood pressure.

Maintenance dose:

Your doctor will continue to prescribe you ADEMPAS at the highest dose you are comfortable on unless you experience any side effect or very low blood pressure, with symptoms like dizziness and fainting. For some patients, lower doses three times a day might be sufficient; your doctor will choose the best dose for you.

Overdose:

In case of drug overdose, contact a health care practitioner, hospital emergency department or regional Poison Control Centre immediately, even if there are no symptoms.

Missed dose:

Do not take a double dose to make up for a forgotten dose. If a dose is missed, treatment should be continued with the next dose as planned.

Stopped treatment:

Don’t stop taking ADEMPAS without talking to your doctor first, because this medicine prevents the development of a serious condition.

In case treatment has to be interrupted for 3 days or more, please contact your doctor before restart of treatment.

Transitions between sildenafil or tadalafil and ADEMPAS:
• If you are stopping sildenafil, you must wait at least 24 hours before you take ADEMPAS.
• If you are stopping tadalafil, you must wait at least 48 hours before you take ADEMPAS.
• If you are stopping ADEMPAS to change to another medicine called a PDE5 inhibitor (e.g. sildenafil or tadalafil) you must wait at least 24 hours from your last dose of ADEMPAS before you take the PDE5 inhibitor.

Your doctor will monitor your health status after any transition.

Special considerations for patients with liver or kidney problems:

You should tell your doctor if you have liver or kidney problems. Your dose may need to be adjusted.

If you have severe liver problems (hepatic impairment, Child Pugh C) or severe kidney problems (creatinine clearance <15 mL/min or if you are on dialysis) you should not take ADEMPAS, as there are no data on the use of ADEMPAS in patients with these conditions.
65 years or older:

If you are 65 years or older your doctor will take extra care in adjusting your dose of ADEMPAS.

Other medicines:

If you are taking HIV or fungal medications, your doctor may decide to start your treatment with one 0.5 mg ADEMPAS tablet, three times daily.

Medicines used to treat stomach disease or heartburn, such as aluminum hydroxide/magnesium carbonate should be taken at least 1 hour after ADEMPAS.

SIDE EFFECTS AND WHAT TO DO ABOUT THEM

Like all medicines, this medicine can cause side effects, although not everybody gets them. The most **serious** side effects are **coughing up blood** (hemoptysis) and **bleeding from the lungs** (pulmonary hemorrhage); cases with fatal outcome were observed.

SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom / Effect</th>
<th>Talk with your doctor or pharmacist</th>
<th>Stop taking drug and seek immediate emergency medical attention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only if severe</td>
<td>In all cases</td>
</tr>
</tbody>
</table>

Very common
- Headache, dizziness
- Indigestion
- Swelling of limbs (edema peripheral)
- Nausea
- Diarrhea
- Vomiting

Common
- Pain in stomach and bowels (gastrointestinal or abdominal pain), bloating, constipation or heartburn (gastroesophageal reflux disease)
- Reduction in red blood cells which can make your skin pale and cause weakness, tiredness, dizziness, headache, breathlessness, unusually fast heartbeat, or chest pain

Uncommon
- Bleeding from lung/coughing up blood (severe)

Unknown
- Allergic reactions (symptoms like sudden wheeziness and chest pain or tightness; or swelling of eyelids, face, lips, tongue or throat.)

This is not a complete list of side effects. For any unexpected effects while taking ADEMPAS, contact your doctor or pharmacist.

HOW TO STORE IT

Keep out of reach and sight of children. Store at room temperature between 15°C and 30°C. Do not use after the expiry date stated on the label.

REPORTING SIDE EFFECTS
You can report any suspected side effects associated with the use of health products to Health Canada by:

- Visiting the Web page on Adverse Reaction Reporting https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/adverse-reaction-reporting.html for information on how to report online, by mail or by fax; or
- Calling toll-free at 1-866-234-2345.

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

MORE INFORMATION

For more information, please contact your health professional or pharmacist first, or Bayer Inc. at 1-800-265-7382.

This document plus the full Product Monograph, prepared for health professionals can be found at: http://www.bayer.ca or by contacting the manufacturer at the above-mentioned phone number.

This leaflet was prepared by:

Bayer Inc.
2920 Matheson Boulevard East
Mississauga, Ontario
L4W 5R6

Last revised: March 31, 2020
© 2020, Bayer Inc.
® TM see www.bayer.ca/tm-mc

All other trademarks are the property of their respective owners.

Bayer